Exposure to 4-nonylphenol induces a shift in the gene expression of gsdf and testis-ova formation and sex reversal in Japanese medaka (Oryzias latipes).


Journal

Journal of applied toxicology : JAT
ISSN: 1099-1263
Titre abrégé: J Appl Toxicol
Pays: England
ID NLM: 8109495

Informations de publication

Date de publication:
03 2021
Historique:
received: 25 05 2020
revised: 28 07 2020
accepted: 28 07 2020
pubmed: 28 8 2020
medline: 15 12 2021
entrez: 28 8 2020
Statut: ppublish

Résumé

The branched isomer mixture 4-nonylphenol (4-NP) has been used worldwide as a surfactant, and can have endocrine-disrupting effects on aquatic organisms. For instance, 4-NP induces the formation of testis-ova (i.e., testicular and ovarian tissue in the same gonad) or male to female sex reversal of various teleost fishes. Recently, our group revealed that altered gsdf gene expression is associated with disruption of gonadal differentiation in Japanese medaka (Oryzias latipes) embryos exposed to methyltestosterone or bisphenol A, suggesting that gsdf might be useful as a biomarker for predicting the impact of endocrine-disrupting chemicals (EDCs) on gonadal differentiation. Here, we used 4-NP to examine further whether gsdf expression at the embryo stage is useful for predicting EDC impact on gonadal sex differentiation. When fertilized medaka eggs were exposed to 32 or 100 μg/L 4-NP, testis-ova in genetic males and sex reversal from genetic male to phenotypic female were observed. At stage 38 (just before hatching), 4-NP exposure at 1-100 μg/L did not affect gsdf expression in XX embryos compared with the nontreated control; however, in XY embryos, the gsdf expression in the 100 μg/L-exposed group was significantly lower than that in the controls. The 4-NP concentration at which gsdf expression was suppressed was equal to that at which testis-ova and sex reversal were induced. These results indicate that expression of the gsdf gene at the embryonic stage in medaka is a useful biomarker for predicting the impact of EDCs on sexual differentiation.

Identifiants

pubmed: 32852118
doi: 10.1002/jat.4051
doi:

Substances chimiques

Endocrine Disruptors 0
Phenols 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

399-409

Informations de copyright

© 2020 John Wiley & Sons, Ltd.

Références

Adkins-Regan, E., & Ascenzi, M. (1987). Social and sexual behaviour of male and female zebra finches treated with oestradiol during the nestling period. Animal Behaviour, 35, 1100-1112. https://doi.org/10.1016/S0003-3472(87)80167-7
Carnevali, O., Santangeli, S., Forner-Piquer, I., Basili, D., & Maradonna, F. (2018). Endocrine-disrupting chemicals in aquatic environment: What are the risks for fish gametes? Fish Physiology and Biochemistry, 44(6), 1561-1576. https://doi.org/10.1007/s10695-018-0507-z
Chen, J., Saili, K. S., Liu, Y., Li, L., Zhao, Y., Jia, Y., & Huang, C. (2017). Developmental bisphenol A exposure impairs sperm function and reproduction in zebrafish. Chemosphere, 169, 262-270. https://doi.org/10.1016/j.chemosphere.2016.11.089
Dang, Z., & Kienzler, A. (2019). Changes in fish sex ratio as a basis for regulating endocrine disruptors. Environment International, 130, 104928. https://doi.org/10.1016/j.envint.2019.104928
Devlin, R. H., & Nagahama, Y. (2002). Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture, 208, 191-364. https://doi.org/10.1016/S0044-8486(02)00057-1
El-Sayed Ali, T., Abdel-Aziz, S. H., El-Sayed, A. F., & Zeid, S. (2014). Structural and functional effects of early exposure to 4-nonylphenol on gonadal development of Nile tilapia (Oreochromis niloticus): a-histological alterations in ovaries. Fish Physiology and Biochemistry, 40(5), 1509-1519. https://doi.org/10.1007/s10695-014-9943-6
Fox, J., & Bouchet-Valat, M. (2018). Rcmdr: R Commander. R Package Version 2.5-1.
Gibson, U., Heid, C. A., & Williams, P. M. (1996). A novel method for real time quantitative RT-PCR. Genome Research, 6, 995-1001. https://doi.org/10.1101/gr.6.10.995
Goksøyr, A. (2006). Endocrine disruptors in the marine environment: Mechanisms of toxicity and their influence on reproductive processes in fish. Journal of Toxicology and Environmental Health Part A, 69, 175-184. https://doi.org/10.1080/15287390500259483
Gray, M. A., & Metcalfe, C. D. (1997). Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed to p-nonylphenol. Environmental Toxicology and Chemistry, 16, 1082-1086.
Hamaguchi, S. (1982). A light- and electron-microscopic study on the migration of primordial germ cells in the teleost, Oryzias latipes. Cell and Tissue Research, 227, 139-151.
Harries, J. E., Runnalls, T., Hill, E., Harris, C. A., Maddix, S., Sumpter, J. P., & Tyler, C. R. (2000). Development of a reproductive performance test for endocrine disrupting chemicals using pair-breeding fathead minnows (Pimephales promelas). Environmental Science & Technology, 34(14), 3003-3011. https://doi.org/10.1021/es991292a
Hill, R. L. Jr., & Janz, D. M. (2003). Developmental estrogenic exposure in zebrafish (Danio rerio): I. Effects on sex ratio and breeding success. Aquatic Toxicology, 63(4), 417-429. https://doi.org/10.1016/S0166-445X(02)00207-2
Hishida, T., & Kawamoto, N. (1970). Androgenic and male-inducing effects of 11-ketotestosterone on a teleost, the medaka (Oryzias latipes). Journal of Experimental Zoology, 173, 279-283. https://doi.org/10.1002/jez.1401730306
Horie, Y., Kanazawa, N., Takahashi, C., Tatarazako, N., & Iguchi, T. (2020). Bisphenol A induces a shift in sex differentiation gene expression with testis-ova or sex reversal in Japanese medaka (Oryzias latipes). Journal of Applied Toxicology, 40, 804-814. https://doi.org/10.1002/jat.3945
Horie, Y., Myosho, T., Sato, T., Sakaizumi, M., Hamaguchi, S., & Kobayashi, T. (2016). Androgen induces gonadal soma-derived factor, Gsdf, in XX gonads correlated to sex-reversal but not Dmrt1 directly, in the teleost fish, northern medaka (Oryzias sakaizumii). Molecular and Cellular Endocrinology, 436, 141-149. https://doi.org/10.1016/j.mce.2016.07.022
Horie, Y., Watanabe, H., Takanobu, H., Yagi, A., Yamagishi, T., Iguchi, T., & Tatarazako, N. (2017). Development of an in vivo anti-androgenic activity detection assay using fenitrothion in Japanese medaka (Oryzias latipes). Journal of Applied Toxicology, 37(3), 339-346. https://doi.org/10.1002/jat.3365
Horie, Y., Yonekura, K., Suzuki, A., & Takahashi, C. (2020). Zinc chloride influences embryonic development, growth, and Gh/Igf-1 gene expression during the early life stage in zebrafish (Danio rerio). Comparative Biochemistry and Physiology-Part C: Toxicology & Pharmacology, 230, 108684. https://doi.org/10.1016/j.cbpc.2019.108684
Inam, E. J., Nwoke, I. B., Udosen, E. D., & Offiong, N. O. (2019). Ecological risks of phenolic endocrine disrupting compounds in an urban tropical river. Environmental Science and Pollution Research, 26(21), 21589-21597. https://doi.org/10.1007/s11356-019-05458-7
Iwamatsu, T. (2004). Stages of normal development in the medaka Oryzias latipes. Mechanisms of Development, 121, 605-618. https://doi.org/10.1016/j.mod.2004.03.012
Jiang, D. N., Mustapha, U. F., Shi, H. J., Huang, Y. Q., Si-Tu, J. X., Wang, M., & Li, G. L. (2019). Expression and transcriptional regulation of gsdf in spotted scat (Scatophagus argus). Comparative Biochemistry and Physiology-Part B: Biochemistry & Molecular Biology, 233, 35-45. https://doi.org/10.1016/j.cbpb.2019.04.002
Jin, Y., Shu, L., Huang, F., Cao, L., Sun, L., & Fu, Z. (2011). Environmental cues influence EDC-mediated endocrine disruption effects in different developmental stages of Japanese medaka (Oryzias latipes). Aquatic Toxicology, 101(1), 254-260. https://doi.org/10.1016/j.aquatox.2010.10.005
Kang, I. J., Yokota, H., Oshima, Y., Tsuruda, Y., Hano, T., Maeda, M., & Honjo, T. (2003). Effects of 4-nonylphenol on reproduction of Japanese medaka, Oryzias latipes. Environmental Toxicology and Chemistry, 22(10), 2438-2445. https://doi.org/10.1897/02-225
Kang, I. J., Yokota, H., Oshima, Y., Tsuruda, Y., Oe, T., Imada, N., & Honjo, T. (2002). Effects of bisphenol A on the reproduction of Japanese medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 21(11), 2394-2400. https://doi.org/10.1002/etc.5620211119
Kang, J. S., Ahn, T. G., & Park, J. W. (2019). Perfluorooctanoic acid (PFOA) and perfluooctane sulfonate (PFOS) induce different modes of action in reproduction to Japanese medaka (Oryzias latipes). Journal of Hazardous Materials, 368, 97-103. https://doi.org/10.1016/j.jhazmat.2019.01.034
Kikuchi, K., & Hamaguchi, S. (2013). Novel sex-determining genes in fish and sex chromosome evolution. Developmental Dynamics, 242, 339-353. https://doi.org/10.1002/dvdy.23927
Knörr, S., & Braunbeck, T. (2002). Decline in reproductive success, sex reversal, and developmental alterations in Japanese medaka (Oryzias latipes) after continuous exposure to octylphenol. Ecotoxicology and Environmental Safety, 51(3), 187-196. https://doi.org/10.1006/eesa.2001.2123
Kobayashi, T., Chiba, A., Sato, T., Myosho, T., Yamamoto, J., Okamura, T., & Horie, Y. (2017). Estrogen alters gonadal soma-derived factor (Gsdf)/Foxl2 expression levels in the testes associated with testis-ova differentiation in adult medaka, Oryzias latipes. Aquatic Toxicology, 191, 209-218. https://doi.org/10.1016/j.aquatox.2017.08.011
Kobayashi, T., Matsuda, M., Kajiura-Kobayashi, H., Suzuki, A., Saito, N., Nakamoto, M., & Nagahama, Y. (2004). Two DM domain genes, DMY and DMRT1, involved in testicular differentiation and development in the medaka, Oryzias latipes. Developmental Dynamics, 231, 518-526. https://doi.org/10.1002/dvdy.20158
Kurokawa, H., Saito, D., Nakamura, S., Katoh-Fukui, Y., Ohta, K., Baba, T., & Tanaka, M. (2007). Germ cells are essential for sexual dimorphism in the medaka gonad. Proceedings of the National Academy of Sciences of the United States of America, 104(43), 16958-16963. https://doi.org/10.1073/pnas.0609932104
Lee, I., Lee, J., Jung, D., Kim, S., & Choi, K. (2019). Two-generation exposure to 2-ethylhexyl 4-methoxycinnamate (EHMC) in Japanese medaka (Oryzias latipes) and its reproduction and endocrine related effects. Chemosphere, 228, 478-484. https://doi.org/10.1016/j.chemosphere.2019.04.123
Loos, R., Gawlik, B. M., Locoro, G., Rimaviciute, E., Contini, S., & Bidoglio, G. (2009). EU-wide survey of polar organic persistent pollutants in European river waters. Environmental Pollution, 157(2), 561-568. https://doi.org/10.1016/j.envpol.2008.09.020
Matsuda, M., Nagahama, Y., Shinomiya, A., Sato, T., Matsuda, C., Kobayashi, T., & Sakaizumi, M. (2002). DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature, 417, 559-563. https://doi.org/10.1038/nature751
Myosho, T., Otake, H., Masuyama, H., Matsuda, M., Kuroki, Y., Fujiyama, A., & Sakaizumi, M. (2012). Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics, 191, 163-170. https://doi.org/10.1534/genetics.111.137497
Nakamoto, M., Matsuda, M., Wang, D. S., Nagahama, Y., & Shibata, N. (2006). Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochemical and Biophysical Research Communications, 344(1), 353-361. https://doi.org/10.1016/j.bbrc.2006.03.137
Nakamura, A., Takanobu, H., Tamura, I., Yamamuro, M., Iguchi, T., & Tatarazako, N. (2014). Verification of responses of Japanese medaka (Oryzias latipes) to anti-androgens, vinclozolin and flutamide, in short-term assays. Journal of Applied Toxicology, 34(5), 545-553. https://doi.org/10.1002/jat.2934
OECD. (2011). OECD guideline for the testing of chemicals. TG. 234, Fish Sexual Development Test. Paris: OECD.
Ogino, Y., Hirakawa, I., Inohaya, K., Sumiya, E., Miyagawa, S., Denslow, N., & Iguchi, T. (2014). Bmp7 and Lef1 are the downstream effectors of androgen signaling in androgen-induced sex characteristics development in medaka. Endocrinology, 155(2), 449-462. https://doi.org/10.1210/en.2013-1507
Oka, T. B. (1931). On the processed on the fin-rays of the male of Oryzias latipes and other sex characters off this fish. Journal of the Faculty of Science, Imperial University of Tokyo Section, IV Zoology, 2, 209-217.
Okada, Y. K., & Yamashita, H. (1944). Experimental investigation of the manifestation of secondary sexual characters in fish, using the medaka, Oryzias latipes (Temminck & Schlegel) as material. Journal of the Faculty of Science, Imperial University of Tokyo Section, IV Zoology, 6, 383-437.
Paul-Prasanth, B., Matsuda, M., Lau, E. L., Suzuki, A., Sakai, F., Kobayashi, T., & Nagahama, Y. (2006). Knock-down of DMY initiates female pathway in the genetic male medaka, Oryzias latipes. Biochemical and Biophysical Research Communications, 351(4), 815-819. https://doi.org/10.1016/j.bbrc.2006.10.095
Paul-Prasanth, B., Shibata, Y., Horiguchi, R., & Nagahama, Y. (2011). Exposure to diethylstilbestrol during embryonic and larval stages of medaka fish (Oryzias latipes) leads to sex reversal in genetic males and reduced gonad weight in genetic females. Endocrinology, 152(2), 707-717. https://doi.org/10.1210/en.2010-0812
Seki, M., Yokota, H., Maeda, M., Tadokoro, H., & Kobayashi, K. (2003). Effects of 4-nonylphenol and 4-tert-octylphenol on sex differentiation and vitellogenin induction in medaka (Oryzias latipes). Environmental Toxicology and Chemistry, 22(7), 1507-1516. https://doi.org/10.1002/etc.5620220712
Shao, B., Hu, J., Yang, M., An, W., & Tao, S. (2005). Nonylphenol and nonylphenol ethoxylates in river water, drinking water, and fish tissues in the area of Chongqing, China. Archives of Environmental Contamination and Toxicology, 48, 467-473. https://doi.org/10.1007/s00244-003-0266-3
Shibata, Y., Paul-Prasanth, B., Suzuki, A., Usami, T., Nakamoto, M., Matsuda, M., & Nagahama, Y. (2010). Expression of gonadal soma derived factor (GSDF) is spatially and temporally correlated with early testicular differentiation in medaka. Gene Expression Patterns, 10, 283-289. https://doi.org/10.1016/j.gep.2010.06.005
Song, J., Nagae, M., Takao, Y., & Soyano, K. (2020). Field survey of environmental estrogen pollution in the coastal area of Tokyo Bay and Nagasaki City using the Japanese common goby Acanthogobius flavimanus. Environmental Pollution, 258, 113673. https://doi.org/10.1016/j.envpol.2019.113673
Suzuki, A., Nakamoto, M., Kato, Y., & Shibata, N. (2005). Effects of estradiol-17β on germ cell proliferation and DMY expression during early sexual differentiation of the medaka Oryzias latipes. Zoological Science, 22(7), 791-796. https://doi.org/10.2108/zsj.22.791
Tanaka, J. N., & Grizzle, J. M. (2002). Effects of nonylphenol on the gonadal differentiation of the hermaphroditic fish, Rivulus marmoratus. Aquatic Toxicology, 57(3), 117-125. https://doi.org/10.1016/S0166-445X(01)00186-2
Uwa, H. (1971). The synthesis of collagen during the development of anal-fin processes in ethisterone-treated females of Oryzias latipes. Development, Growth & Differentiation, 13, 119-124. https://doi.org/10.1111/j.1440-169X.1971.00119.x
Watanabe, H., Horie, Y., Takanobu, H., Koshio, M., Flynn, K., Iguchi, T., & Tatarazako, N. (2017). Medaka extended one-generation reproduction test evaluating 4-nonylphenol. Environmental Toxicology and Chemistry, 36(12), 3254-3266. https://doi.org/10.1002/etc.3895
Weber, A. A., Moreira, D. P., Melo, R. M. C., Vieira, A. B. C., Prado, P. S., da Silva, M. A. N., & Rizzo, E. (2017). Reproductive effects of oestrogenic endocrine disrupting chemicals in Astyanax rivularis inhabiting headwaters of the Velhas River, Brazil. Science of the Total Environment, 592, 693-703. https://doi.org/10.1016/j.scitotenv.2017.02.181
Yang, Y., Liu, Q., Xiao, Y., Xu, S., Wang, X., Yang, J., & Li, J. (2019). High temperature increases the gsdf expression in masculinization of genetically female Japanese flounder (Paralichthys olivaceus). General and Comparative Endocrinology, 274, 17-25. https://doi.org/10.1016/j.ygcen.2018.12.012
Zha, J., Sun, L., Spear, P. A., & Wang, Z. (2008). Comparison of ethinylestradiol and nonylphenol effects on reproduction of Chinese rare minnows (Gobiocypris rarus). Ecotoxicology and Environmental Safety, 71(2), 390-399. https://doi.org/10.1016/j.ecoenv.2007.11.017
Zhang, Q. J., Chadderton, A., Clark, R. L., & Augustine-Rauch, K. A. (2003). Selection of normalizer genes in conducting relative gene expression analysis of embryos. Birth Defects Research Part A: Clinical and Molecular Teratology, 67(8), 533-544. https://doi.org/10.1002/bdra.10075
Zhang, Y., Wang, J., Lu, L., Li, Y., Wei, Y., Cheng, Y., & Ru, S. (2020). Genotoxic biomarkers and histological changes in marine medaka (Oryzias melastigma) exposed to 17α-ethynylestradiol and 17β-trenbolone. Marine Pollution Bulletin, 150, 110601. https://doi.org/10.1016/j.marpolbul.2019.110601

Auteurs

Yoshifumi Horie (Y)

Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan.

Nobuhiko Kanazawa (N)

Faculty of Systems Science and Technology, Akita Prefectural University, Akita, Japan.

Chiho Takahashi (C)

Faculty of Bioresource Sciences, Akita Prefectural University, Akita, Japan.

Norihisa Tatarazako (N)

Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Matsuyama, Japan.

Taisen Iguchi (T)

Nanobioscience, Yokohama City University, Yokohama, Japan.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH