Computational design of transmembrane pores.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
09 2020
Historique:
received: 24 08 2019
accepted: 29 05 2020
pubmed: 28 8 2020
medline: 21 10 2020
entrez: 28 8 2020
Statut: ppublish

Résumé

Transmembrane channels and pores have key roles in fundamental biological processes

Identifiants

pubmed: 32848250
doi: 10.1038/s41586-020-2646-5
pii: 10.1038/s41586-020-2646-5
pmc: PMC7483984
mid: NIHMS1599393
doi:

Substances chimiques

Alexa 488 hydrazide 0
Hydrazines 0
Ion Channels 0
Liposomes 0
Porins 0
Water 059QF0KO0R

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Pagination

129-134

Subventions

Organisme : NIGMS NIH HHS
ID : P30 GM124169
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS111573
Pays : United States
Organisme : Wellcome Trust
ID : 200873/Z/16/Z
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NIGMS NIH HHS
ID : P30 GM124169-01
Pays : United States

Références

Gilbert, R. J. C., Bayley, H. & Anderluh, G. Membrane pores: from structure and assembly, to medicine and technology. Phil. Trans. R. Soc. Lond. B 372, 20160208 (2017).
doi: 10.1098/rstb.2016.0208
Eisenstein, M. An ace in the hole for DNA sequencing. Nature 550, 285–288 (2017).
doi: 10.1038/550285a
Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).
doi: 10.1073/pnas.93.24.13770
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).
doi: 10.1038/nnano.2009.12
Lear, J. D., Wasserman, Z. R. & DeGrado, W. F. Synthetic amphiphilic peptide models for protein ion channels. Science 240, 1177–1181 (1988).
doi: 10.1126/science.2453923
Akerfeldt, K. S., Lear, J. D., Wasserman, Z. R., Chung, L. A. & DeGrado, W. F. Synthetic peptides as models for ion channel proteins. Acc. Chem. Res. 26, 191–197 (1993).
doi: 10.1021/ar00028a009
Joh, N. H. et al. De novo design of a transmembrane Zn
doi: 10.1126/science.1261172
Lu, P. et al. Accurate computational design of multipass transmembrane proteins. Science 359, 1042–1046 (2018).
doi: 10.1126/science.aaq1739
Mahendran, K. R. et al. A monodisperse transmembrane α-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).
doi: 10.1038/nchem.2647
Mravic, M. et al. Packing of apolar side chains enables accurate design of highly stable membrane proteins. Science 363, 1418–1423 (2019).
doi: 10.1126/science.aav7541
Joh, N. H., Grigoryan, G., Wu, Y. & DeGrado, W. F. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Phil. Trans. R. Soc. Lond. B 372, 20160214 (2017).
doi: 10.1098/rstb.2016.0214
Niitsu, A., Heal, J. W., Fauland, K., Thomson, A. R. & Woolfson, D. N. Membrane-spanning α-helical barrels as tractable protein-design targets. Phil. Trans. R. Soc. Lond. B 372, 20160213 (2017).
doi: 10.1098/rstb.2016.0213
Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).
doi: 10.1126/science.1257452
Rhys, G. G. et al. Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nat. Commun. 9, 4132 (2018).
doi: 10.1038/s41467-018-06391-y
Crick, F. H. C. The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685–689 (1953).
doi: 10.1107/S0365110X53001952
Grigoryan, G. & Degrado, W. F. Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011).
doi: 10.1016/j.jmb.2010.08.058
Huang, P. S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014).
doi: 10.1126/science.1257481
Boyken, S. E. et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352, 680–687 (2016).
doi: 10.1126/science.aad8865
Das, R. et al. Simultaneous prediction of protein folding and docking at high resolution. Proc. Natl Acad. Sci. USA 106, 18978–18983 (2009).
doi: 10.1073/pnas.0904407106
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).
doi: 10.1016/S0263-7855(97)00009-X
Hou, X., Pedi, L., Diver, M. M. & Long, S. B. Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308–1313 (2012).
doi: 10.1126/science.1228757
Hou, X., Burstein, S. R. & Long, S. B. Structures reveal opening of the store-operated calcium channel Orai. eLife 7, e36758 (2018).
doi: 10.7554/eLife.36758
Dynes, J. L., Amcheslavsky, A. & Cahalan, M. D. Genetically targeted single-channel optical recording reveals multiple Orai1 gating states and oscillations in calcium influx. Proc. Natl Acad. Sci. USA 113, 440–445 (2016).
doi: 10.1073/pnas.1523410113
Jiang, Y. et al. X-ray structure of a voltage-dependent K
doi: 10.1038/nature01580
Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).
doi: 10.1038/nature10238
Tang, L. et al. Structural basis for Ca
doi: 10.1038/nature12775
Pan, X. et al. Structure of the human voltage-gated sodium channel Na
doi: 10.1126/science.aau2486
Fujii, S. et al. Liposome display for in vitro selection and evolution of membrane proteins. Nat. Protoc. 9, 1578–1591 (2014).
doi: 10.1038/nprot.2014.107
Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y. & Yomo, T. In vitro evolution of α-hemolysin using a liposome display. Proc. Natl Acad. Sci. USA 110, 16796–16801 (2013).
doi: 10.1073/pnas.1314585110
Dwidar, M. et al. Programmable artificial cells using histamine-responsive synthetic riboswitch. J. Am. Chem. Soc. 141, 11103–11114 (2019).
doi: 10.1021/jacs.9b03300
Sim, A. Y. L., Lipfert, J., Herschlag, D. & Doniach, S. Salt dependence of the radius of gyration and flexibility of single-stranded DNA in solution probed by small-angle X-ray scattering. Phys. Rev. E 86, 021901 (2012).
doi: 10.1103/PhysRevE.86.021901
Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).
doi: 10.1038/nature19946
Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1865 (1996).
doi: 10.1126/science.274.5294.1859
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084

Auteurs

Chunfu Xu (C)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.

Peilong Lu (P)

Institute for Protein Design, University of Washington, Seattle, WA, USA. lupeilong@westlake.edu.cn.
Department of Biochemistry, University of Washington, Seattle, WA, USA. lupeilong@westlake.edu.cn.
Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China. lupeilong@westlake.edu.cn.
Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China. lupeilong@westlake.edu.cn.

Tamer M Gamal El-Din (TM)

Department of Pharmacology, University of Washington, Seattle, WA, USA.

Xue Y Pei (XY)

Department of Biochemistry, University of Cambridge, Cambridge, UK.

Matthew C Johnson (MC)

Department of Biochemistry, University of Washington, Seattle, WA, USA.

Atsuko Uyeda (A)

Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.

Matthew J Bick (MJ)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Lyell Immunopharma, Inc., Seattle, WA, USA.

Qi Xu (Q)

Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.

Daohua Jiang (D)

Department of Pharmacology, University of Washington, Seattle, WA, USA.

Hua Bai (H)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.

Gabriella Reggiano (G)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.

Yang Hsia (Y)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.

T J Brunette (TJ)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.

Jiayi Dou (J)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.

Dan Ma (D)

Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
Department of Biological Structure, University of Washington, Seattle, WA, USA.

Eric M Lynch (EM)

Department of Biochemistry, University of Washington, Seattle, WA, USA.

Scott E Boyken (SE)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Lyell Immunopharma, Inc., Seattle, WA, USA.

Po-Ssu Huang (PS)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.
Department of Bioengineering, Stanford University, Stanford, CA, USA.

Lance Stewart (L)

Institute for Protein Design, University of Washington, Seattle, WA, USA.

Frank DiMaio (F)

Institute for Protein Design, University of Washington, Seattle, WA, USA.
Department of Biochemistry, University of Washington, Seattle, WA, USA.

Justin M Kollman (JM)

Department of Biochemistry, University of Washington, Seattle, WA, USA.

Ben F Luisi (BF)

Department of Biochemistry, University of Cambridge, Cambridge, UK.

Tomoaki Matsuura (T)

Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Japan.

William A Catterall (WA)

Department of Pharmacology, University of Washington, Seattle, WA, USA. wcatt@uw.edu.

David Baker (D)

Institute for Protein Design, University of Washington, Seattle, WA, USA. dabaker@uw.edu.
Department of Biochemistry, University of Washington, Seattle, WA, USA. dabaker@uw.edu.
Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA. dabaker@uw.edu.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Humans Endoribonucleases RNA, Messenger RNA Caps Gene Expression Regulation
Animals Dietary Fiber Dextran Sulfate Mice Disease Models, Animal
Humans Meta-Analysis as Topic Sample Size Models, Statistical Computer Simulation

Classifications MeSH