Computational design of transmembrane pores.
Cell Line
Computer Simulation
Cryoelectron Microscopy
Crystallography, X-Ray
Electric Conductivity
Escherichia coli
/ genetics
Genes, Synthetic
/ genetics
Hydrazines
Ion Channels
/ chemistry
Ion Transport
Liposomes
/ metabolism
Models, Molecular
Patch-Clamp Techniques
Porins
/ chemistry
Protein Engineering
Protein Structure, Secondary
Solubility
Synthetic Biology
Water
/ chemistry
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
24
08
2019
accepted:
29
05
2020
pubmed:
28
8
2020
medline:
21
10
2020
entrez:
28
8
2020
Statut:
ppublish
Résumé
Transmembrane channels and pores have key roles in fundamental biological processes
Identifiants
pubmed: 32848250
doi: 10.1038/s41586-020-2646-5
pii: 10.1038/s41586-020-2646-5
pmc: PMC7483984
mid: NIHMS1599393
doi:
Substances chimiques
Alexa 488 hydrazide
0
Hydrazines
0
Ion Channels
0
Liposomes
0
Porins
0
Water
059QF0KO0R
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
129-134Subventions
Organisme : NIGMS NIH HHS
ID : P30 GM124169
Pays : United States
Organisme : NINDS NIH HHS
ID : R35 NS111573
Pays : United States
Organisme : Wellcome Trust
ID : 200873/Z/16/Z
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : Howard Hughes Medical Institute
Pays : United States
Organisme : NIGMS NIH HHS
ID : P30 GM124169-01
Pays : United States
Références
Gilbert, R. J. C., Bayley, H. & Anderluh, G. Membrane pores: from structure and assembly, to medicine and technology. Phil. Trans. R. Soc. Lond. B 372, 20160208 (2017).
doi: 10.1098/rstb.2016.0208
Eisenstein, M. An ace in the hole for DNA sequencing. Nature 550, 285–288 (2017).
doi: 10.1038/550285a
Kasianowicz, J. J., Brandin, E., Branton, D. & Deamer, D. W. Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl Acad. Sci. USA 93, 13770–13773 (1996).
doi: 10.1073/pnas.93.24.13770
Clarke, J. et al. Continuous base identification for single-molecule nanopore DNA sequencing. Nat. Nanotechnol. 4, 265–270 (2009).
doi: 10.1038/nnano.2009.12
Lear, J. D., Wasserman, Z. R. & DeGrado, W. F. Synthetic amphiphilic peptide models for protein ion channels. Science 240, 1177–1181 (1988).
doi: 10.1126/science.2453923
Akerfeldt, K. S., Lear, J. D., Wasserman, Z. R., Chung, L. A. & DeGrado, W. F. Synthetic peptides as models for ion channel proteins. Acc. Chem. Res. 26, 191–197 (1993).
doi: 10.1021/ar00028a009
Joh, N. H. et al. De novo design of a transmembrane Zn
doi: 10.1126/science.1261172
Lu, P. et al. Accurate computational design of multipass transmembrane proteins. Science 359, 1042–1046 (2018).
doi: 10.1126/science.aaq1739
Mahendran, K. R. et al. A monodisperse transmembrane α-helical peptide barrel. Nat. Chem. 9, 411–419 (2017).
doi: 10.1038/nchem.2647
Mravic, M. et al. Packing of apolar side chains enables accurate design of highly stable membrane proteins. Science 363, 1418–1423 (2019).
doi: 10.1126/science.aav7541
Joh, N. H., Grigoryan, G., Wu, Y. & DeGrado, W. F. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Phil. Trans. R. Soc. Lond. B 372, 20160214 (2017).
doi: 10.1098/rstb.2016.0214
Niitsu, A., Heal, J. W., Fauland, K., Thomson, A. R. & Woolfson, D. N. Membrane-spanning α-helical barrels as tractable protein-design targets. Phil. Trans. R. Soc. Lond. B 372, 20160213 (2017).
doi: 10.1098/rstb.2016.0213
Thomson, A. R. et al. Computational design of water-soluble α-helical barrels. Science 346, 485–488 (2014).
doi: 10.1126/science.1257452
Rhys, G. G. et al. Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nat. Commun. 9, 4132 (2018).
doi: 10.1038/s41467-018-06391-y
Crick, F. H. C. The Fourier transform of a coiled-coil. Acta Crystallogr. 6, 685–689 (1953).
doi: 10.1107/S0365110X53001952
Grigoryan, G. & Degrado, W. F. Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011).
doi: 10.1016/j.jmb.2010.08.058
Huang, P. S. et al. High thermodynamic stability of parametrically designed helical bundles. Science 346, 481–485 (2014).
doi: 10.1126/science.1257481
Boyken, S. E. et al. De novo design of protein homo-oligomers with modular hydrogen-bond network-mediated specificity. Science 352, 680–687 (2016).
doi: 10.1126/science.aad8865
Das, R. et al. Simultaneous prediction of protein folding and docking at high resolution. Proc. Natl Acad. Sci. USA 106, 18978–18983 (2009).
doi: 10.1073/pnas.0904407106
Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996).
doi: 10.1016/S0263-7855(97)00009-X
Hou, X., Pedi, L., Diver, M. M. & Long, S. B. Crystal structure of the calcium release-activated calcium channel Orai. Science 338, 1308–1313 (2012).
doi: 10.1126/science.1228757
Hou, X., Burstein, S. R. & Long, S. B. Structures reveal opening of the store-operated calcium channel Orai. eLife 7, e36758 (2018).
doi: 10.7554/eLife.36758
Dynes, J. L., Amcheslavsky, A. & Cahalan, M. D. Genetically targeted single-channel optical recording reveals multiple Orai1 gating states and oscillations in calcium influx. Proc. Natl Acad. Sci. USA 113, 440–445 (2016).
doi: 10.1073/pnas.1523410113
Jiang, Y. et al. X-ray structure of a voltage-dependent K
doi: 10.1038/nature01580
Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).
doi: 10.1038/nature10238
Tang, L. et al. Structural basis for Ca
doi: 10.1038/nature12775
Pan, X. et al. Structure of the human voltage-gated sodium channel Na
doi: 10.1126/science.aau2486
Fujii, S. et al. Liposome display for in vitro selection and evolution of membrane proteins. Nat. Protoc. 9, 1578–1591 (2014).
doi: 10.1038/nprot.2014.107
Fujii, S., Matsuura, T., Sunami, T., Kazuta, Y. & Yomo, T. In vitro evolution of α-hemolysin using a liposome display. Proc. Natl Acad. Sci. USA 110, 16796–16801 (2013).
doi: 10.1073/pnas.1314585110
Dwidar, M. et al. Programmable artificial cells using histamine-responsive synthetic riboswitch. J. Am. Chem. Soc. 141, 11103–11114 (2019).
doi: 10.1021/jacs.9b03300
Sim, A. Y. L., Lipfert, J., Herschlag, D. & Doniach, S. Salt dependence of the radius of gyration and flexibility of single-stranded DNA in solution probed by small-angle X-ray scattering. Phys. Rev. E 86, 021901 (2012).
doi: 10.1103/PhysRevE.86.021901
Huang, P.-S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).
doi: 10.1038/nature19946
Song, L. et al. Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore. Science 274, 1859–1865 (1996).
doi: 10.1126/science.274.5294.1859
Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
doi: 10.1002/jcc.20084