Modeling and forecasting the COVID-19 pandemic in India.

Basic reproduction number COVID-19 Isolation Mathematical model Model prediction Sensitivity analysis

Journal

Chaos, solitons, and fractals
ISSN: 0960-0779
Titre abrégé: Chaos Solitons Fractals
Pays: England
ID NLM: 100971564

Informations de publication

Date de publication:
Oct 2020
Historique:
received: 19 05 2020
revised: 12 06 2020
accepted: 22 06 2020
entrez: 25 8 2020
pubmed: 25 8 2020
medline: 25 8 2020
Statut: ppublish

Résumé

In India, 100,340 confirmed cases and 3155 confirmed deaths due to COVID-19 were reported as of May 18, 2020. Due to absence of specific vaccine or therapy, non-pharmacological interventions including social distancing, contact tracing are essential to end the worldwide COVID-19. We propose a mathematical model that predicts the dynamics of COVID-19 in 17 provinces of India and the overall India. A complete scenario is given to demonstrate the estimated pandemic life cycle along with the real data or history to date, which in turn divulges the predicted inflection point and ending phase of SARS-CoV-2. The proposed model monitors the dynamics of six compartments, namely susceptible (S), asymptomatic (A), recovered (R), infected (I), isolated infected (

Identifiants

pubmed: 32834603
doi: 10.1016/j.chaos.2020.110049
pii: S0960-0779(20)30446-X
pii: 110049
pmc: PMC7321056
doi:

Types de publication

Journal Article

Langues

eng

Pagination

110049

Informations de copyright

© 2020 Elsevier Ltd. All rights reserved.

Déclaration de conflit d'intérêts

The authors declare that they have no conflict of interest.

Références

JAMA. 2020 Apr 7;323(13):1239-1242
pubmed: 32091533
J Theor Biol. 2012 Feb 21;295:47-58
pubmed: 22079943
Lancet. 2020 Mar 21;395(10228):931-934
pubmed: 32164834
J Math Biol. 1990;28(4):365-82
pubmed: 2117040
Int J Infect Dis. 2020 Apr;93:211-216
pubmed: 32145465
PLoS One. 2015 May 08;10(5):e0123611
pubmed: 25955428
Lancet Infect Dis. 2020 May;20(5):553-558
pubmed: 32171059
N Engl J Med. 2020 Mar 19;382(12):1177-1179
pubmed: 32074444
Chaos Solitons Fractals. 2020 May;134:109761
pubmed: 32308258
Chaos Solitons Fractals. 2020 Jun;135:109846
pubmed: 32341628
Nat Med. 2020 Apr;26(4):506-510
pubmed: 32284616
J Clin Med. 2020 Feb 07;9(2):
pubmed: 32046137
Chaos. 2020 Jul;30(7):071101
pubmed: 32752627
N Engl J Med. 2020 Feb 20;382(8):727-733
pubmed: 31978945
Science. 2020 Jan 17;367(6475):234-235
pubmed: 31949058
Proc Biol Sci. 2004 Nov 7;271(1554):2223-32
pubmed: 15539347
Swiss Med Wkly. 2020 Feb 07;150:w20203
pubmed: 32031234
Int J Infect Dis. 2020 Mar;92:214-217
pubmed: 32007643
J Theor Biol. 2008 Sep 7;254(1):178-96
pubmed: 18572196
Math Biosci. 2002 Nov-Dec;180:29-48
pubmed: 12387915
Proc Biol Sci. 2015 May 7;282(1806):20150347
pubmed: 25833863
Infect Dis Poverty. 2020 Feb 28;9(1):24
pubmed: 32111262

Auteurs

Kankan Sarkar (K)

Department of Mathematics, Malda College, Malda, West Bengal 732101, India.

Subhas Khajanchi (S)

Department of Mathematics, Presidency University, 86/1 College Street, Kolkata 700073, India.

Juan J Nieto (JJ)

Instituto de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

Classifications MeSH