Negative density-dependent dispersal emerges from the joint evolution of density- and body condition-dependent dispersal strategies.

Body condition density-dependent dispersal dispersal evolution individual-based model phenotype-dependent dispersal

Journal

Evolution; international journal of organic evolution
ISSN: 1558-5646
Titre abrégé: Evolution
Pays: United States
ID NLM: 0373224

Informations de publication

Date de publication:
10 2020
Historique:
received: 19 02 2020
revised: 28 07 2020
accepted: 03 08 2020
pubmed: 25 8 2020
medline: 11 6 2021
entrez: 25 8 2020
Statut: ppublish

Résumé

Empirical studies have documented both positive and negative density-dependent dispersal, yet most theoretical models predict positive density dependence as a mechanism to avoid competition. Several hypotheses have been proposed to explain the occurrence of negative density-dependent dispersal, but few of these have been formally modeled. Here, we developed an individual-based model of the evolution of density-dependent dispersal. This model is novel in that it considers the effects of density on dispersal directly, and indirectly through effects on individual condition. Body condition is determined mechanistically, by having juveniles compete for resources in their natal patch. We found that the evolved dispersal strategy was a steep, increasing function of both density and condition. Interestingly, although populations evolved a positive density-dependent dispersal strategy, the simulated metapopulations exhibited negative density-dependent dispersal. This occurred because of the negative relationship between density and body condition: high density sites produced low-condition individuals that lacked the resources required for dispersal. Our model, therefore, generates the novel hypothesis that observed negative density-dependent dispersal can occur when high density limits the ability of organisms to disperse. We suggest that future studies consider how phenotype is linked to the environment when investigating the evolution of dispersal.

Identifiants

pubmed: 32830867
doi: 10.1111/evo.14085
doi:

Banques de données

Dryad
['10.5061/dryad.5qfttdz2z']

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2238-2249

Subventions

Organisme : Entomological Society of Canada Graduate Research Travel Scholarship
Organisme : Royal Society University Research Fellowship
Organisme : European Society for Evolutionary Biology Godfrey Hewitt Mobility Award

Informations de copyright

© 2020 The Authors. Evolution © 2020 The Society for the Study of Evolution.

Références

Baines, C. B., S. J. McCauley, and L. Rowe. 2015. Dispersal depends on body condition and predation risk in the semi-aquatic insect, Notonecta undulata. Ecol Evol 5:2307-2316.
Baines, C. B., I. M. C. Ferzoco, and S. J. McCauley. 2019. Phenotype-by-environment interactions influence dispersal. J. Anim. Ecol. 88:1263-1274.
Barbraud, C., A. R. Johnson, and G. Bertault. 2003. Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: the importance of body condition. J. Anim. Ecol. 72:246-257.
Benard, M. F., and S. J. McCauley. 2008. Integrating across life-history stages: consequences of natal habitat effects on dispersal. Am. Nat. 171:553-567.
Bocedi, G., J. Heinonen, and J. M. Travis. 2012. Uncertainty and the role of information acquisition in the evolution of context-dependent emigration. Am. Nat. 179:606-620.
Bonte, D., and E. de la Pena. 2009. Evolution of body condition-dependent dispersal in metapopulations. J. Evol. Biol. 22:1242-1251.
Bonte, D., N. De Meester, and E. Matthysen. 2011. Selective integration advantages when transience is costly: immigration behaviour in an agrobiont spider. Anim. Behav. 81:837-841.
Bonte, D., H. Van Dyck, J. M. Bullock, A. Coulon, M. Delgado, M. Gibbs, V. Lehouck, E. Matthysen, K. Mustin, M. Saastamoinen et al. 2012. Costs of dispersal. Biol. Rev. 87:290-312.
Bowler, D. E., and T. G. Benton. 2005. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol. Rev. 80:205-225.
Clobert, J., J. F. Le Galliard, J. Cote, S. Meylan, and M. Massot. 2009. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12:197-209.
Clutton-Brock, T. H., M. Major, S. D. Albon, and F. E. Guinness. 1987. Early development and population dynamics in red deer. I. Density-dependent effects on juvenile survival. J. Anim. Ecol. 56:53-67.
Cockbain, A. J. 1961. Fuel utilization and duration of tethered flight in Aphis fabae Scop. J. Exp. Biol. 38:163-174.
Comins, H. N., W. D. Hamilton, and R. M. May. 1980. Evolutionarily stable dispersal strategies. J. Theor. Biol. 82:205-230.
del Mar Delgado, M., V. Penteriani, E. Revilla, and V. O. Nams. 2010. The effect of phenotypic traits and external cues on natal dispersal movements. J. Anim. Ecol. 79:620-632.
den Boer, P. J. 1968. Spreading of risk and stabilization of animal numbers. Acta Biotheor. 18:165-194.
Eraud, C., A. Jacquet, and P. Legagneux. 2011. Post-fledging movements, home range, and survival of juvenile Eurasian collared-doves in western France. Condor 113:150-158.
Gilbert, L. E., and M. C. Singer. 1973. Dispersal and gene flow in a butterfly species. Am. Nat. 107:58-72.
Gyllenberg, M., E. Kisdi, and M. Utz. 2008. Evolution of condition-dependent dispersal under kin competition. J. Math. Biol. 57:285-307.
Hamilton, W. D., and R. M. May. 1977. Dispersal in stable habitats. Nature 269:578-581.
Hanski, I., A. Peltonen, and L. Kaski. 1991. Natal dispersal and social dominance in the common shrew Sorex araneus. Oikos 62:48-58.
Harman, R. R., J. Goddard, R. Shivaji, and J. T. Cronin. 2020. Frequency of occurrence and population-dynamic consequences of different forms of density-dependent emigration. Am. Nat. 195:851-867.
Ims, R. A., and H. P. Andreassen. 2005. Density-dependent dispersal and spatial population dynamics. Proc. R. Soc. B. 272:913-918.
Kim, S.-Y., R. Torres, and H. Drummond. 2009. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology 90:230-239.
Kun, Á., and I. Scheuring. 2006. The evolution of density-dependent dispersal in a noisy spatial population model. Oikos 115:308-320.
Kuussaari, M., M. Nieminen, and I. Hanski. 1996. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. J. Anim. Ecol. 65:791-801.
Matthysen, E. 2005. Density-dependent dispersal in birds and mammals. Ecography 28:403-416.
Matthysen, E. 2012. Multicausality of dispersal: a review. In: J., Clobert, M. Baguette, T. G. Benton, and J. M. Bullock (eds.), Dispersal Ecology and Evolution. Oxford Univ. Press, Oxford, U.K.
McCauley, S. J. 2010. Body size and social dominance influence breeding dispersal in male Pachydiplax longipennis (Odonata). Ecol. Entomol. 35:377-385.
McMahon, T. E., and J. C. Tash. 1988. Experimental analysis of the role of emigration in population regulation of desert pupfish. Ecology. 69:1871-1883.
Metz, J. A. J., and M. Gyllenberg. 2001. How should we define fitness in structured metapopulation models? Including an application to the calculation of evolutionarily stable dispersal strategies. Proc. R. Soc. B. 268:499-508.
Meylan, S., J. Belliure, J. Clobert, and M. de Fraipont. 2002. Stress and body condition as prenatal and postnatal determinants of dispersal in the common lizard (Lacerta vivipara). Horm. Behav. 42:319-326.
Moore, M. P., and H. H. Whiteman. 2016. Natal philopatry varies with larval condition in salamanders. Behav. Ecol. Sociobiol. 70:1247-1255.
Muraji, M., T. Miura, and F. Nakasuji. 1989. Phenological studies on the wing dimorphism of a semi-aquatic bug, Microvelia douglasi (Heteroptera: Veliidae). Res. Popul. Ecol. 31:129-138.
Pettorelli, N., J. M. Gaillard, G. Van Laere, P. Duncan, P. Kjellander, O. Liberg, D. Delorme, and D. Maillard. 2002. Variations in adult body mass in roe deer: the effects of population density at birth and of habitat quality. Proc. R. Soc. B. 269:747-753.
Poethke, H. J., and T. Hovestadt. 2002. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. B. 269:637-645.
R Core Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Rodrigues, A. M., and R. A. Johnstone. 2014. Evolution of positive and negative density-dependent dispersal. Proc. R. Soc. B. 281:20141226.
Roland, J., N. Keyghobadi, and S. Fownes. 2000. Alpine parnassius butterfly dispersal: effects of landscape and population size. Ecology 81:1642-1653.
Ronce, O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Ann. Rev. Ecol. Evol. System. 38:231-253.
Ruokolainen, L., A. Linden, V. V. Kaitala, and M. S. Fowler. 2009. Ecological and evolutionary dynamics under coloured environmental variation. Trends Ecol. Evol. 24:555-563.
Southwood, T. R. E. 1977. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46:336-365.
Tarwater, C. E., and S. R. Beissinger. 2012. Dispersal polymorphisms from natal phenotype-environment interactions have carry-over effects on lifetime reproductive success of a tropical parrot. Ecol. Lett. 15:1218-1229.
Travis, J. M. J., D. J. Murrell, and C. Dytham. 1999. The evolution of density-dependent dispersal. Proc. R. Soc. B. 266:1837-1842.
Wilder, S. M., D. Raubenheimer, S. J. Simpson, and K. P. Lee. 2016. Moving beyond body condition indices as an estimate of fitness in ecological and evolutionary studies. Func. Ecol. 30:108-115.

Auteurs

Celina B Baines (CB)

Biology Department, University of Toronto Mississauga, Mississauga, L5L 1C6, Canada.
Ecology and Evolutionary Biology Department, University of Toronto, Toronto, M5S 3B2, Canada.

Justin M J Travis (JMJ)

School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.

Shannon J McCauley (SJ)

Biology Department, University of Toronto Mississauga, Mississauga, L5L 1C6, Canada.
Ecology and Evolutionary Biology Department, University of Toronto, Toronto, M5S 3B2, Canada.

Greta Bocedi (G)

School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH