Cortical thickness abnormalities in long-term remitted Cushing's disease.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
21 08 2020
Historique:
received: 17 10 2019
accepted: 02 06 2020
revised: 31 05 2020
entrez: 23 8 2020
pubmed: 23 8 2020
medline: 22 6 2021
Statut: epublish

Résumé

Long-term remitted Cushing's disease (LTRCD) patients commonly continue to present persistent psychological and cognitive deficits, and alterations in brain function and structure. Although previous studies have conducted gray matter volume analyses, assessing cortical thickness and surface area of LTRCD patients may offer further insight into the neuroanatomical substrates of Cushing's disease. Structural 3T magnetic resonance images were obtained from 25 LTRCD patients, and 25 age-, gender-, and education-matched healthy controls (HCs). T1-weighted images were segmented using FreeSurfer software to extract mean cortical thickness and surface area values of 68 cortical gray matter regions and two whole hemispheres. Paired sample t tests explored differences between the anterior cingulate cortex (ACC; region of interest), and the whole brain. Validated scales assessed psychiatric symptomatology, self-reported cognitive functioning, and disease severity. After correction for multiple comparisons, ROI analyses indicated that LTRCD-patients showed reduced cortical thickness of the left caudal ACC and the right rostral ACC compared to HCs. Whole-brain analyses indicated thinner cortices of the left caudal ACC, left cuneus, left posterior cingulate cortex, right rostral ACC, and bilateral precuneus compared to HCs. No cortical surface area differences were identified. Cortical thickness of the left caudal ACC and left cuneus were inversely associated with anxiety symptoms, depressive symptoms, and disease duration, although certain associations did not persist after correction for multiple testing. In six of 68 regions examined, LTRCD patients had reduced cortical thickness in comparison to HCs. Cortical thickness of the left caudal ACC was inversely associated with disease duration. This suggests that prolonged and excessive exposure to glucocorticoids may be related to cortical thinning of brain structures involved in emotional and cognitive processing.

Identifiants

pubmed: 32826851
doi: 10.1038/s41398-020-00980-6
pii: 10.1038/s41398-020-00980-6
pmc: PMC7443132
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

293

Références

Lonser, R. R., Nieman, L. & Oldfield, E. H. Cushing’s disease: pathobiology, diagnosis, and management. J. Neurosurg. 126, 404–417 (2017).
pubmed: 27104844 doi: 10.3171/2016.1.JNS152119
Nieman, L. K. & Ilias, I. Evaluation and treatment of Cushing’s syndrome. Am. J. Med. 118, 1340–1346 (2005).
pubmed: 16378774 doi: 10.1016/j.amjmed.2005.01.059
Pereira, A. M., Tiemensma, J. & Romijn, J. A. Neuropsychiatric disorders in Cushing’s syndrome. Neuroendocrinology 92, 65–70 (2010).
pubmed: 20829621 doi: 10.1159/000314317
Ragnarsson, O., Berglund, P., Eder, D. N. & Johannsson, G. Long-term cognitive impairments and attentional deficits in patients with Cushing’s disease and cortisol-producing adrenal adenoma in remission. J. Clin. Endocrinol. Metab. 97, E1640–E1648 (2012).
pubmed: 22761462 doi: 10.1210/jc.2012-1945
Starkman, M. N., Schteingart, D. E. & Schork, M. A. Correlation of bedside cognitiveand neuropsychological tests inpatients with Cushing’s syndrome. Psychosomatics 27, 508–511 (1986).
pubmed: 3737840 doi: 10.1016/S0033-3182(86)72657-1
Forget, H., Lacroix, A., Somma, M. & Cohen, H. Cognitive decline in patients with Cushing’s syndrome. J. Int. Neuropsychol. Soc. 6, 20–29 (2000).
pubmed: 10761364 doi: 10.1017/S1355617700611037
León‐Carrión, J. et al. A clinical profile of memory impairment in humans due to endogenous glucocorticoid excess. Clin. Endocrinol. 70, 192–200 (2009).
doi: 10.1111/j.1365-2265.2008.03355.x
Newell-Price, J., Bertagna, X., Grossman, A. B. & Nieman, L. K. Cushing’s syndrome. Lancet 367, 1605–1617 (2006).
pubmed: 16698415 doi: 10.1016/S0140-6736(06)68699-6
Tiemensma, J. et al. Increased prevalence of psychopathology and maladaptive personality traits after long-term cure of Cushing’s disease. J. Clin. Endocrinol. Metab. 95, E129–E141 (2010).
pubmed: 20660031 doi: 10.1210/jc.2010-0512
David, D. J. et al. Neurogenesis-dependent and-independent effects of fluoxetine in an anima; model of anxiety/depression. Neuron 62, 479–493 (2009).
pubmed: 19477151 pmcid: 2759281 doi: 10.1016/j.neuron.2009.04.017
Darcet, F. et al. Learning and memory impairments in a neuroendocrine mouse model of anxiety/depression. Front. Behav. Neurosci. 8, 136 (2014).
pubmed: 24822041 pmcid: 4013464 doi: 10.3389/fnbeh.2014.00136
Cerqueira, J. J. et al. Corticosteroid status influences the volume of the rat cingulate cortex–a magnetic resonance imaging study. J. Psychiatr. Res. 39, 451–460 (2005).
pubmed: 15992553 doi: 10.1016/j.jpsychires.2005.01.003
Andela, C. D. et al. Mechanisms in endocrinology: Cushing’s syndrome causes irreversible effects on the human brain: a systematic review of structural and functional magnetic resonance imaging studies. Eur. J. Endocrinol. 173, R1–R14 (2015).
pubmed: 25650405 doi: 10.1530/EJE-14-1101
De Kloet, E. R., Joëls, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463 (2005).
doi: 10.1038/nrn1683 pubmed: 15891777
Vale, W., Vaughan, J., Smith, M. & Yamamoto, G. Effects of synthetic ovine corticotropin-releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology 113, 1121–1131 (1983).
pubmed: 6307665 doi: 10.1210/endo-113-3-1121
Biller, B. M. K. et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J. Clin. Endocrinol. Metab. 93, 2454–2462 (2008).
pubmed: 18413427 pmcid: 3214276 doi: 10.1210/jc.2007-2734
Bertagna, X. & Guignat, L. Approach to the Cushing’s disease patient with persistent/recurrent hypercortisolism after pituitary surgery. J. Clin. Endocrinol. Metab. 98, 1307–1318 (2013).
pubmed: 23564942 doi: 10.1210/jc.2012-3200
Andela, C. D. et al. Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in patients with long-term remission of Cushing’s disease: a case–control study. Eur. J. Endocrinol. 169, 811–819 (2013).
pubmed: 24031092 doi: 10.1530/EJE-13-0471
Hook, J. N. et al. Patterns of cognitive change over time and relationship to age following successful treatment of Cushing’s disease. J. Int. Neuropsychol. Soc. 13, 21–29 (2007).
pubmed: 17166300 doi: 10.1017/S1355617707070051
Bas-Hoogendam, J. M. et al. Altered neural processing of emotional faces in remitted Cushing’s disease. Psychoneuroendocrinology 59, 134–146 (2015).
pubmed: 26092780 doi: 10.1016/j.psyneuen.2015.05.001
Starkman, M. N., Giordani, B., Gebarski, S. S. & Schteingart, D. E. Improvement in learning associated with increase in hippocampal formation volume. Biol. Psychiatry 53, 233–238 (2003).
pubmed: 12559656 doi: 10.1016/S0006-3223(02)01750-X
Tiemensma, J. et al. Subtle cognitive impairments in patients with long-term cure of Cushing’s disease. J. Clin. Endocrinol. Metab. 95, 2699–2714 (2010).
pubmed: 20371667 doi: 10.1210/jc.2009-2032
Van Aken, M. O. et al. Quality of life in patients after long-term biochemical cure of Cushing’s disease. J. Clin. Endocrinol. Metab. 90, 3279–3286 (2005).
pubmed: 15741267 doi: 10.1210/jc.2004-1375
Van der Werff, S. J. et al. Widespread reductions of white matter integrity in patients with long-term remission of Cushing’s disease. NeuroImage Clin. 4, 659–667 (2014).
pubmed: 24936417 pmcid: 4053612 doi: 10.1016/j.nicl.2014.01.017
Molent, C. et al. Reduced cortical thickness and increased gyrification in generalized anxiety disorder: a 3T MRI study. Psychol. Med. 48, 2001–2010 (2018).
pubmed: 29239286 doi: 10.1017/S003329171700352X
Syal, S. et al. Grey matter abnormalities in social anxiety disorder: a pilot study. Metab. Brain Dis. 27, 299–309 (2012).
pubmed: 22527992 doi: 10.1007/s11011-012-9299-5
Abé, C. et al. Cortical thickness, volume and surface area in patients with bipolar disorder types I and II. J. Psychiatry Neurosci. 41, 240 (2016).
pubmed: 26645741 doi: 10.1503/jpn.150093
Lan, M. J. et al. Cortical thickness differences between bipolar depression and major depressive disorder. Bipolar Disord. 16, 378–388 (2014).
pubmed: 24428430 pmcid: 4047134 doi: 10.1111/bdi.12175
Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900 (2017).
doi: 10.1038/mp.2016.60 pubmed: 27137745
Zhao, K. et al. Altered patterns of association between cortical thickness and subcortical volume in patients with first episode major depressive disorder: a structural MRI study. Psychiatry Res. Neuroimaging 260, 16–22 (2017).
doi: 10.1016/j.pscychresns.2016.12.001 pubmed: 28012422
Crespo, I. et al. Impaired decision-making process and thinner prefrontal cortex in patients with Cushing’s syndrome. Clin. Endocrinol. 81, 826–833 (2014).
doi: 10.1111/cen.12564
Tirosh, A. et al. Computerized analysis of brain MRI parameters dynamics in young patients with Cushing syndrome-a case-control study. J. Clin. Endocrinol. Metab. 105, e2069–e2077 (2020).
doi: 10.1210/clinem/dgz303
Irle, E. et al. Reduced amygdalar and hippocampal size in adults with generalized social phobia. J. Psychiatry Neurosci. 35, 126 (2010).
pubmed: 20184810 pmcid: 2834794 doi: 10.1503/jpn.090041
Koolschijn, P. C. M. P., van Haren, N. E. M., Lensvelt-Mulders, G. J. L. M., Pol, H. E. H. & Kahn, R. S. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum. Brain Mapp. 30, 3719–3735 (2009).
pubmed: 19441021 pmcid: 6871089 doi: 10.1002/hbm.20801
Liao, W. et al. Altered effective connectivity network of the amygdala in social anxiety disorder: a resting-state FMRI study. PLoS ONE 5, e15238 (2010).
pubmed: 21203551 pmcid: 3008679 doi: 10.1371/journal.pone.0015238
Arnone, D., McIntosh, A. M., Ebmeier, K. P., Munafò, M. R. & Anderson, I. M. Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. Eur. Neuropsychopharmacol. 22, 1–16 (2012).
doi: 10.1016/j.euroneuro.2011.05.003 pubmed: 21723712
Radua, J. & Mataix-Cols, D. Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. Br. J. Psychiatry 195, 393–402 (2009).
pubmed: 19880927 doi: 10.1192/bjp.bp.108.055046
Bourdeau, I. et al. Loss of brain volume in endogenous Cushing’s syndrome and its reversibility aftercorrection of hypercortisolism. J. Clin. Endocrinol. Metab. 87, 1949–1954 (2002).
pubmed: 11994323
Starkman, M. N. et al. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol. Psychiatry 46, 1595–1602 (1999).
pubmed: 10624540 doi: 10.1016/S0006-3223(99)00203-6
Van Der Werff, S. J. et al. Resting-state functional connectivity in patients with long-term remission of Cushing’s disease. Neuropsychopharmacology 40, 1888 (2015).
pubmed: 25652248 pmcid: 4839512 doi: 10.1038/npp.2015.38
Drevets, W. C., Savitz, J. & Trimble, M. The subgenual anterior cingulate cortex in mood disorders. CNS Spectr. 13, 663 (2008).
pubmed: 18704022 pmcid: 2729429 doi: 10.1017/S1092852900013754
Linares, I. M. P. et al. Cortical thinning of the right anterior cingulate cortex in spider phobia: a magnetic resonance imaging and spectroscopy study. Brain Res. 1576, 35–42 (2014).
pubmed: 24892191 doi: 10.1016/j.brainres.2014.05.040
Tekin, S. & Cummings, J. L. Frontal–subcortical neuronal circuits and clinical neuropsychiatry: an update. J. Psychosom. Res. 53, 647–654 (2002).
doi: 10.1016/S0022-3999(02)00428-2 pubmed: 12169339
Harrison, P. J. The neuropathology of schizophrenia: a critical review of the data and their interpretation. Brain 122, 593–624 (1999).
pubmed: 10219775 doi: 10.1093/brain/122.4.593
Narr, K. L. et al. Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cereb. Cortex 15, 708–719 (2004).
pubmed: 15371291 doi: 10.1093/cercor/bhh172
Rakic, P. & Swaab, D. F. Defects of neuronal migration and the pathogenesis of cortical malformations. Prog. Brain Res. 73, 15–37 (1988).
pubmed: 3047794 doi: 10.1016/S0079-6123(08)60494-X
Mountcastle, V. B. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J. Neurophysiol. 20, 408–434 (1957).
pubmed: 13439410 doi: 10.1152/jn.1957.20.4.408
Ehrlich, S. et al. Associations of cortical thickness and cognition in patients with schizophrenia and healthy controls. Schizophr. Bull. 38, 1050–1062 (2011).
pubmed: 21436318 pmcid: 3446215 doi: 10.1093/schbul/sbr018
Im, K. et al. Brain size and cortical structure in the adult human brain. Cereb. Cortex 18, 2181–2191 (2008).
pubmed: 18234686 doi: 10.1093/cercor/bhm244
Pardoe, H. R., Abbott, D. F. & Jackson, G. D., Alzheimer’s Disease Neuroimaging Initiative. Sample size estimates for well‐powered cross‐sectional cortical thickness studies. Hum. Brain Mapp. 34, 3000–3009 (2013).
pubmed: 22807270 doi: 10.1002/hbm.22120
Montgomery, S. A. & Åsberg, M. A. R. I. E. A new depression scale designed to be sensitive to change. Br. J. Psychiatry 134, 382–389 (1979).
doi: 10.1192/bjp.134.4.382 pubmed: 444788
Rush, A. J. et al. The inventory for depressive symptomatology (IDS): preliminary findings. Psychiatry Res. 18, 65–87 (1986).
pubmed: 3737788 doi: 10.1016/0165-1781(86)90060-0
Beck, A. T., Epstein, N., Brown, G. & Steer, R. A. An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56, 893 (1988).
pubmed: 3204199 doi: 10.1037/0022-006X.56.6.893
Marks, I. M. & Mathews, A. M. Brief standard self-rating for phobic patients. Behav. Res. Ther. 17, 263–267 (1979).
pubmed: 526242 doi: 10.1016/0005-7967(79)90041-X
Chatterjee, A., Anderson, K. E., Moskowitz, C. B., Hauser, W. A. & Marder, K. S. A comparison of self-report and caregiver assessment of depression, apathy, and irritability in Huntington’s disease. J. Neuropsychiatry Clin. Neurosci. 17, 378–383 (2005).
pubmed: 16179661 doi: 10.1176/jnp.17.3.378
Starkstein, S. E., Petracca, G., Chemerinski, E. & Kremer, J. Syndromic validity of apathy in Alzheimer’s disease. Am. J. Psychiatry 158, 872–877 (2001).
pubmed: 11384893 doi: 10.1176/appi.ajp.158.6.872
Broadbent, D. E., Cooper, P. F., FitzGerald, P. & Parkes, K. R. The cognitive failures questionnaire (CFQ) and its correlates. Br. J. Clin. Psychol. 21, 1–16 (1982).
pubmed: 7126941 doi: 10.1111/j.2044-8260.1982.tb01421.x
Sonino, N., Boscaro, M., Fallo, F. & Fava, G. A. A clinical index for rating severity in Cushing’s syndrome. Psychother. Psychosom. 69, 216–220 (2000).
pubmed: 10867589 doi: 10.1159/000012396
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
Glatard, T. et al. Reproducibility of neuroimaging analyses across operating systems. Front. Neuroinform. 9, 12 (2015).
pubmed: 25964757 pmcid: 4408913 doi: 10.3389/fninf.2015.00012
De Kloet, E. R., Vreugdenhil, E., Oitzl, M. S. & Joels, M. Brain corticosteroid receptor balance in health and disease. Endocr. Rev. 19, 269–301 (1998).
pubmed: 9626555
Geerling, J. C., Engeland, W. C., Kawata, M. & Loewy, A. D. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J. Neurosci. 26, 411–417 (2006).
pubmed: 16407537 pmcid: 6674421 doi: 10.1523/JNEUROSCI.3115-05.2006
Brown, S. M., Henning, S. & Wellman, C. L. Mild, short-term stress alters dendritic morphology in rat medial prefrontal cortex. Cereb. Cortex 15, 1714–1722 (2005).
pubmed: 15703248 doi: 10.1093/cercor/bhi048
Cook, S. C. & Wellman, C. L. Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J. Neurobiol. 60, 236–248 (2004).
doi: 10.1002/neu.20025 pubmed: 15266654
Magariños, A. M., McEwen, B. S., Flügge, G. & Fuchs, E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J. Neurosci. 16, 3534–3540 (1996).
pubmed: 8627386 pmcid: 6579123 doi: 10.1523/JNEUROSCI.16-10-03534.1996
McEwen, B. S. Stress, adaptation, and disease: allostasis and allostatic load. Ann. N. Y. Acad. Sci. 840, 33–44 (1998).
pubmed: 9629234 doi: 10.1111/j.1749-6632.1998.tb09546.x
Radley, J. J. et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience 125, 1–6 (2004).
pubmed: 15051139 doi: 10.1016/j.neuroscience.2004.01.006
Watanabe, Y., Gould, E. & McEwen, B. S. Stress induces atrophy of apical dendrites of hippocampal CA3 pyramidal neurons. Brain Res. 588, 341–345 (1992).
pubmed: 1393587 doi: 10.1016/0006-8993(92)91597-8
Fuchs, E., Flugge, G. & Czeh, B. Remodeling of neuronal networks by stress. Front. Biosci. 11, 2746–2758 (2006).
pubmed: 16720347 doi: 10.2741/2004
McEwen, B. S. & Sapolsky, R. M. Stress and cognitive function. Curr. Opin. Neurobiol. 5, 205–216 (1995).
pubmed: 7620309 doi: 10.1016/0959-4388(95)80028-X
Sapolsky, R. M. The Physiological Relevance of Glucocorticoid Endangerment of the Hippocampus a. Ann. N. Y. Acad. Sci. 746, 294–304 (1994).
pubmed: 7825884 doi: 10.1111/j.1749-6632.1994.tb39247.x
Maguire, R. P. et al. Evidence of enhancement of spatial attention during inhibition of a visuo-motor response. Neuroimage 20, 1339–1345 (2003).
pubmed: 14568502 doi: 10.1016/S1053-8119(03)00402-6
Mathalon, D. H., Whitfield, S. L. & Ford, J. M. Anatomy of an error: ERP and fMRI. Biol. Psychol. 64, 119–141 (2003).
pubmed: 14602358 doi: 10.1016/S0301-0511(03)00105-4
Cavanna, A. E. & Trimble, M. R. The precuneus: a review of its functional anatomy and behavioural correlates. Brain 129, 564–583 (2006).
doi: 10.1093/brain/awl004 pubmed: 16399806
Haldane, M., Cunningham, G., Androutsos, C. & Frangou, S. Structural brain correlates of response inhibition in Bipolar Disorder I. J. Psychopharmacol. 22, 138–143 (2008).
pubmed: 18308812 doi: 10.1177/0269881107082955
Nielsen, F. Å., Balslev, D. & Hansen, L. K. Mining the posterior cingulate: segregation between memory and pain components. Neuroimage 27, 520–532 (2005).
pubmed: 15946864 doi: 10.1016/j.neuroimage.2005.04.034
Stanislav, K., Alexander, V., Maria, P., Evgenia, N. & Boris, V. Anatomical characteristics of cingulate cortex and neuropsychological memory tests performance. Procedia Soc. Behav. Sci. 86, 128–133 (2013).
doi: 10.1016/j.sbspro.2013.08.537
Ragnarsson, O. et al. Decreased prefrontal functional brain response during memory testing in women with Cushing’s syndrome in remission. Psychoneuroendocrinology 82, 117–125 (2017).
pubmed: 28544904 doi: 10.1016/j.psyneuen.2017.05.010
Leech, R. & Sharp, D. J. The role of the posterior cingulate cortex in cognition and disease. Brain 137, 12–32 (2013).
pubmed: 23869106 pmcid: 3891440 doi: 10.1093/brain/awt162
Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).
pubmed: 19299253 pmcid: 2758684 doi: 10.1093/cercor/bhp026
Sanabria-Diaz, G. et al. Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks. Neuroimage 50, 1497–1510 (2010).
pubmed: 20083210 doi: 10.1016/j.neuroimage.2010.01.028
Wierenga, L. M., Langen, M., Oranje, B. & Durston, S. Unique developmental trajectories of cortical thickness and surface area. Neuroimage 87, 120–126 (2014).
pubmed: 24246495 doi: 10.1016/j.neuroimage.2013.11.010
Winkler, A. M. et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53, 1135–1146 (2010).
pubmed: 20006715 doi: 10.1016/j.neuroimage.2009.12.028
Pakkenberg, B. & Gundersen, H. J. G. Neocortical neuron number in humans: effect of sex and age. J. Comp. Neurol. 384, 312–320 (1997).
pubmed: 9215725 doi: 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K
Resmini, E. et al. Hippocampal dysfunction in cured Cushing’s syndrome patients, detected by 1 H‐MR‐spectroscopy. Clin. Endocrinol. 79, 700–707 (2013).
Matute, C., Domercq, M. & Sánchez‐Gómez, M. V. Glutamate‐mediated glial injury: mechanisms and clinical importance. Glia 53, 212–224 (2006).
pubmed: 16206168 doi: 10.1002/glia.20275
Inglese, M. et al. Global average gray and white matter N-acetylaspartate concentration in the human brain. Neuroimage 41, 270–276 (2008).
pubmed: 18400521 doi: 10.1016/j.neuroimage.2008.02.034
Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N. & Namboodiri, A. M. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog. Neurobiol. 81, 89–131 (2007).
pubmed: 17275978 pmcid: 1919520 doi: 10.1016/j.pneurobio.2006.12.003

Auteurs

S E E C Bauduin (SEEC)

Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands. S.E.E.C.Bauduin@lumc.nl.
Leiden Institute for Brain and Cognition, Leiden, The Netherlands. S.E.E.C.Bauduin@lumc.nl.

Z van der Pal (Z)

Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands.

A M Pereira (AM)

Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
Department of Endocrinology and Metabolic Diseases and Center for Endocrine Tumors, Leiden University Medical Center, Leiden, The Netherlands.

O C Meijer (OC)

Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
Department of Endocrinology and Metabolic Diseases and Center for Endocrine Tumors, Leiden University Medical Center, Leiden, The Netherlands.

E J Giltay (EJ)

Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands.

N J A van der Wee (NJA)

Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
Leiden Institute for Brain and Cognition, Leiden, The Netherlands.

S J A van der Werff (SJA)

Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
Leiden Institute for Brain and Cognition, Leiden, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH