A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
20 08 2020
Historique:
received: 21 01 2020
accepted: 31 07 2020
entrez: 22 8 2020
pubmed: 21 8 2020
medline: 23 6 2021
Statut: epublish

Résumé

Methods to produce protein amyloid fibrils, in vitro, and in situ structure characterization, are of primary importance in biology, medicine, and pharmacology. We first demonstrated the droplet on a super-hydrophobic substrate as the reactor to produce protein amyloid fibrils with real-time monitoring of the growth process by using combined light-sheet microscopy and thermal imaging. The molecular structures were characterized by Raman spectroscopy, X-ray diffraction and X-ray scattering. We demonstrated that the convective flow induced by the temperature gradient of the sample is the main driving force in the growth of well-ordered protein fibrils. Particular attention was devoted to PHF6 peptide and full-length Tau441 protein to form amyloid fibrils. By a combined experimental with the molecular dynamics simulations, the conformational polymorphism of these amyloid fibrils were characterized. The study provided a feasible procedure to optimize the amyloid fibrils formation and characterizations of other types of proteins in future studies.

Identifiants

pubmed: 32820203
doi: 10.1038/s42003-020-01187-7
pii: 10.1038/s42003-020-01187-7
pmc: PMC7441408
doi:

Substances chimiques

Amyloid 0
Protein Aggregates 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

457

Références

Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev. Biochem 86, 27–68 (2017).
pubmed: 28498720 doi: 10.1146/annurev-biochem-061516-045115
Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).
pubmed: 30250260 pmcid: 6432913 doi: 10.1038/s41593-018-0235-9
Goedert, M., Eisenberg, D. S. & Crowther, R. A. Propagation of Tau aggregates and neurodegeneration. Annu Rev. Neurosci. 40, 189–210 (2017).
pubmed: 28772101 doi: 10.1146/annurev-neuro-072116-031153
Fichou, Y. et al. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol. Commun. 7, 31–31 (2019).
pubmed: 30823892 pmcid: 6397507 doi: 10.1186/s40478-019-0682-x
Sibille, N. et al. Structural Impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Biochem.-Us 45, 12560–12572 (2006).
doi: 10.1021/bi060964o
Trumbore, C. N. Shear-induced amyloid formation in the brain: III. The roles of shear energy and seeding in a proposed shear model. J. Alzheimers Dis. 65, 47–70 (2018).
Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307, 262–265 (2005).
pubmed: 15653506 doi: 10.1126/science.1105850
Dunstan, D. E., Hamilton-Brown, P., Asimakis, P., Ducker, W. & Bertolini, J. Shear-induced structure and mechanics of beta-lactoglobulin amyloid fibrils. Soft Matter 5, 5020–5028 (2009).
doi: 10.1039/b914089a
Teoh, C. L. et al. Shear flow induced changes in apolipoprotein C-II conformation and amyloid fibril formation. Biochemistry 50, 4046–4057 (2011).
pubmed: 21476595 doi: 10.1021/bi2002482
Bekard, I. B., Asimakis, P., Bertolini, J. & Dunstan, D. E. The effects of shear flow on protein structure and function. Biopolymers 95, 733–745 (2011).
pubmed: 21544798
Dunstan, D. E., Hamilton-Brown, P., Asimakis, P., Ducker, W. & Bertolini, J. Shear flow promotes amyloid-{beta} fibrilization. Protein Eng. Des. Sel. 22, 741–746 (2009).
pubmed: 19850675 doi: 10.1093/protein/gzp059
Hill, E. K., Krebs, B., Goodall, D. G., Howlett, G. J. & Dunstan, D. E. Shear flow induces amyloid fibril formation. Biomacromolecules 7, 10–13 (2006).
pubmed: 16398490 doi: 10.1021/bm0505078
Jaspe, J. & Hagen, S. J. Do protein molecules unfold in a simple shear flow? Biophys. J. 91, 3415–3424 (2006).
pubmed: 16891374 pmcid: 1614479 doi: 10.1529/biophysj.106.089367
Herling, T. W., Levin, A., Saar, K. L., Dobson, C. M. & Knowles, T. P. J. Microfluidic approaches for probing amyloid assembly and behaviour. Lab Chip 18, 999–1016 (2018).
pubmed: 29527600 doi: 10.1039/C7LC01241A
Fodera, V., Pagliara, S., Otto, O., Keyser, U. F. & Donald, A. M. Microfluidics reveals a flow-induced large-scale polymorphism of protein aggregates. J. Phys. Chem. Lett. 3, 2803–2807 (2012).
doi: 10.1021/jz301375d
De Angelis, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682–687 (2011).
doi: 10.1038/nphoton.2011.222
Gentile, F. et al. Direct imaging of DNA fibers: the visage of double helix. Nano Lett. 12, 6453–6458 (2012).
pubmed: 23171353 doi: 10.1021/nl3039162
Marini, M. et al. The structure of DNA by direct imaging. Sci. Adv. 1, e1500734 (2015).
pubmed: 26601243 pmcid: 4643809 doi: 10.1126/sciadv.1500734
Coluccio, M. L. et al. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Sci. Adv. 1, e1500487 (2015).
pubmed: 26601267 pmcid: 4643778 doi: 10.1126/sciadv.1500487
Sperling, M. & Gradzielski, M. Droplets, evaporation and a superhydrophobic surface: simple tools for guiding colloidal particles into complex materials. Gels 3, 15 (2017).
pmcid: 6318646 doi: 10.3390/gels3020015 pubmed: 6318646
Scarratt, L. R. J., Steiner, U. & Neto, C. A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Adv. Colloid Interface Sci. 246, 133–152 (2017).
pubmed: 28577754 doi: 10.1016/j.cis.2017.05.018
Lotito, V. & Zambelli, T. Approaches to self-assembly of colloidal monolayers: a guide for nanotechnologists. Adv. Colloid Interface Sci. 246, 217–274 (2017).
pubmed: 28669390 doi: 10.1016/j.cis.2017.04.003
Pan, Z., Dash, S., Weibel, J. A. & Garimella, S. V. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates. Langmuir 29, 15831–15841 (2013).
pubmed: 24320680 doi: 10.1021/la4045286
Xu, W., Leeladhar, R., Kang, Y. T. & Choi, C. H. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Langmuir 29, 6032–6041 (2013).
pubmed: 23656600 doi: 10.1021/la400452e
Trantum, J. R. et al. Cross-sectional tracking of particle motion in evaporating drops: flow fields and interfacial accumulation. Langmuir 29, 6221–6231 (2013).
pubmed: 23611508 pmcid: 4915780 doi: 10.1021/la400542x
Kang, K. H., Lim, H. C., Lee, H. W. & Lee, S. J. Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Phys. Fluids 25, 042001 (2013).
Ganguly, P. et al. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J. Phys. Chem. B 119, 4582–4593 (2015).
pubmed: 25775228 pmcid: 4428543 doi: 10.1021/acs.jpcb.5b00175
Sawaya, M. R. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457 (2007).
pubmed: 17468747 doi: 10.1038/nature05695
Perez, M. et al. The role of the VQIVYK peptide in tau protein phosphorylation. J. Neurochem. 103, 1447–1460 (2007).
pubmed: 17680993 doi: 10.1111/j.1471-4159.2007.04834.x
Autiero, I., Saviano, M. & Langella, E. In silico investigation and targeting of amyloid beta oligomers of different size. Mol. Biosyst. 9, 2118–2124 (2013).
pubmed: 23708585 doi: 10.1039/c3mb70086k
Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).
doi: 10.1021/ct700301q
Autiero, I., Ruvo, M., Improta, R. & Vitagliano, L. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition. Biochim Biophys. Acta Gen. Subj. 1862, 1006–1016 (2018).
pubmed: 29413905 doi: 10.1016/j.bbagen.2018.01.014
Chawla, M., Autiero, I., Oliva, R. & Cavallo, L. Energetics and dynamics of the non-natural fluorescent 4AP:DAP base pair. Phys. Chem. Chem. Phys. 20, 3699–3709 (2018).
pubmed: 29345270 doi: 10.1039/C7CP07400J pmcid: 29345270
McBride, S. A., Sanford, S. P., Lopez, J. M. & Hirsa, A. H. Shear-induced amyloid fibrillization: the role of inertia. Soft Matter 12, 3461–3467 (2016).
pubmed: 26956731 doi: 10.1039/C5SM02916C
Yuan, T. Z. et al. Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies. Chembiochem 16, 393–396 (2015).
pubmed: 25620679 pmcid: 4388321 doi: 10.1002/cbic.201402427
Moretti, M. et al. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation. Microelectron. Eng. 191, 54–59 (2018).
doi: 10.1016/j.mee.2018.01.025
Hyers, R. W. Fluid flow effects in levitated droplets. Meas. Sci. Technol. 16, 394–401 (2005).
doi: 10.1088/0957-0233/16/2/010
Mazloomi Moqaddam, A., Derome, D. & Carmeliet, J. Dynamics of contact line pinning and depinning of droplets evaporating on microribs. Langmuir 34, 5635–5645 (2018).
pubmed: 29667830 doi: 10.1021/acs.langmuir.8b00409
Paxson, A. T. & Varanasi, K. K. Self-similarity of contact line depinning from textured surfaces. Nat. Commun. 4, 1492 (2013).
pubmed: 23422660 pmcid: 3586717 doi: 10.1038/ncomms2482
Yu, D. I. et al. Dynamics of contact line depinning during droplet evaporation based on thermodynamics. Langmuir 31, 1950–1957 (2015).
pubmed: 25635466 doi: 10.1021/la504971y
Liimatainen, V. et al. Mapping microscale wetting variations on biological and synthetic water-repellent surfaces. Nat. Commun. 8, 1798 (2017).
pubmed: 29176751 pmcid: 5702616 doi: 10.1038/s41467-017-01510-7
Wells, G. G. et al. Snap evaporation of droplets on smooth topographies. Nat. Commun. 9, 1380 (2018).
pubmed: 29643382 pmcid: 5895805 doi: 10.1038/s41467-018-03840-6
Papageorgiou, D. T. On the breakup of viscous-liquid threads. Phys. Fluids 7, 1529–1544 (1995).
doi: 10.1063/1.868540
Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).
doi: 10.1103/RevModPhys.69.865
Fandrich, M. et al. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J. Intern. Med. 283, 218–237 (2018).
pubmed: 29360284 pmcid: 5820168 doi: 10.1111/joim.12732
Yu, L., Reutzel-Edens, S. M. & Mitchell, C. A. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Org. Process Res. Dev. 4, 396–402 (2000).
doi: 10.1021/op000028v
Greenwald, J. & Riek, R. Biology of amyloid: structure, function, and regulation. Structure 18, 1244–1260 (2010).
pubmed: 20947013 doi: 10.1016/j.str.2010.08.009
Wood, R. W. & Collins, G. Raman spectra of a series of normal alcohols and other compounds. Phys. Rev. 42, 0386–0392 (1932).
doi: 10.1103/PhysRev.42.386
Moretti, M. et al. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow. Microelectron. Eng. 178, 194–198 (2017).
doi: 10.1016/j.mee.2017.05.045
Maiti, N. C., Apetri, M. M., Zagorski, M. G., Carey, P. R. & Anderson, V. E. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein. J. Am. Chem. Soc. 126, 2399–2408 (2004).
pubmed: 14982446 doi: 10.1021/ja0356176
Annamalai, K. et al. Polymorphism of amyloid fibrils in vivo. Angew. Chem. Int. Ed. Engl. 55, 4822–4825 (2016).
pubmed: 26954430 pmcid: 4864496 doi: 10.1002/anie.201511524
Huang, A. & Stultz, C. M. Conformational sampling with implicit solvent models: application to the PHF6 peptide in tau protein. Biophys. J. 92, 34–45 (2007).
pubmed: 17040986 doi: 10.1529/biophysj.106.091207
Berriman, J. et al. Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc. Natl Acad. Sci. USA 100, 9034–9038 (2003).
pubmed: 12853572 doi: 10.1073/pnas.1530287100
Seidler, P. M. et al. Structure-based inhibitors of tau aggregation. Nat. Chem. 10, 170–176 (2018).
pubmed: 29359764 doi: 10.1038/nchem.2889
Balbirnie, M., Grothe, R. & Eisenberg, D. S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl Acad. Sci. USA 98, 2375–2380 (2001).
pubmed: 11226247 doi: 10.1073/pnas.041617698
Maurer-Stroh, S. et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods 7, 237–242 (2010).
pubmed: 20154676 doi: 10.1038/nmeth.1432
Pitrone, P. G. et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods 10, 598–599 (2013).
pubmed: 23749304 pmcid: 7450513 doi: 10.1038/nmeth.2507
Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
pubmed: 27713081 pmcid: 27713081 doi: 10.1016/j.ymeth.2016.09.016
Morozova-Roche, L. A. et al. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J. Struct. Biol. 130, 339–351 (2000).
pubmed: 10940237 doi: 10.1006/jsbi.2000.4264

Auteurs

Peng Zhang (P)

SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Manola Moretti (M)

SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Marco Allione (M)

SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Yuansi Tian (Y)

High-Speed Fluids Imaging Lab, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Javier Ordonez-Loza (J)

Clean Combustion Research Center, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Davide Altamura (D)

Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, 70126, Bari, Italy.

Cinzia Giannini (C)

Istituto di Cristallografia - Consiglio Nazionale delle Ricerche (IC-CNR), Via Amendola 122/O, 70126, Bari, Italy.

Bruno Torre (B)

SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Gobind Das (G)

Department of Physics, Khalifa University, P.O. Box: 127788, Abu Dhabi, UAE.

Erqiang Li (E)

Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, 230026, China.

Sigurdur T Thoroddsen (ST)

High-Speed Fluids Imaging Lab, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

S Mani Sarathy (SM)

Clean Combustion Research Center, Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Ida Autiero (I)

Molecular Horizon, Bettona, Italy.
National Research Council, Institute of Biostructures and Bioimaging, Naples, Italy.

Andrea Giugni (A)

SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia.

Francesco Gentile (F)

Department of electrical Engineering and Information Technology, University Federico II, Naples, Italy.

Natalia Malara (N)

BIONEM lab, University Magna Graecia, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.

Monica Marini (M)

Materials and Microsystems Laboratory, Department of Applied Science and Technology, Politecnico di Torino, 10129, Torino, Italy.

Enzo Di Fabrizio (E)

SMILEs Lab, Physical Science and Engineering (PSE) and Biological and Environmental Science and Engineering (BESE) Divisions, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia. enzo.difabrizio@polito.it.
Materials and Microsystems Laboratory, Department of Applied Science and Technology, Politecnico di Torino, 10129, Torino, Italy. enzo.difabrizio@polito.it.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Databases, Protein Protein Domains Protein Folding Proteins Deep Learning
alpha-Synuclein Humans Animals Mice Lewy Body Disease
Silicon Dioxide Water Hot Temperature Compressive Strength X-Ray Diffraction

Classifications MeSH