A droplet reactor on a super-hydrophobic surface allows control and characterization of amyloid fibril growth.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
20 08 2020
20 08 2020
Historique:
received:
21
01
2020
accepted:
31
07
2020
entrez:
22
8
2020
pubmed:
21
8
2020
medline:
23
6
2021
Statut:
epublish
Résumé
Methods to produce protein amyloid fibrils, in vitro, and in situ structure characterization, are of primary importance in biology, medicine, and pharmacology. We first demonstrated the droplet on a super-hydrophobic substrate as the reactor to produce protein amyloid fibrils with real-time monitoring of the growth process by using combined light-sheet microscopy and thermal imaging. The molecular structures were characterized by Raman spectroscopy, X-ray diffraction and X-ray scattering. We demonstrated that the convective flow induced by the temperature gradient of the sample is the main driving force in the growth of well-ordered protein fibrils. Particular attention was devoted to PHF6 peptide and full-length Tau441 protein to form amyloid fibrils. By a combined experimental with the molecular dynamics simulations, the conformational polymorphism of these amyloid fibrils were characterized. The study provided a feasible procedure to optimize the amyloid fibrils formation and characterizations of other types of proteins in future studies.
Identifiants
pubmed: 32820203
doi: 10.1038/s42003-020-01187-7
pii: 10.1038/s42003-020-01187-7
pmc: PMC7441408
doi:
Substances chimiques
Amyloid
0
Protein Aggregates
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
457Références
Chiti, F. & Dobson, C. M. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev. Biochem 86, 27–68 (2017).
pubmed: 28498720
doi: 10.1146/annurev-biochem-061516-045115
Soto, C. & Pritzkow, S. Protein misfolding, aggregation, and conformational strains in neurodegenerative diseases. Nat. Neurosci. 21, 1332–1340 (2018).
pubmed: 30250260
pmcid: 6432913
doi: 10.1038/s41593-018-0235-9
Goedert, M., Eisenberg, D. S. & Crowther, R. A. Propagation of Tau aggregates and neurodegeneration. Annu Rev. Neurosci. 40, 189–210 (2017).
pubmed: 28772101
doi: 10.1146/annurev-neuro-072116-031153
Fichou, Y. et al. The elusive tau molecular structures: can we translate the recent breakthroughs into new targets for intervention? Acta Neuropathol. Commun. 7, 31–31 (2019).
pubmed: 30823892
pmcid: 6397507
doi: 10.1186/s40478-019-0682-x
Sibille, N. et al. Structural Impact of heparin binding to full-length Tau as studied by NMR spectroscopy. Biochem.-Us 45, 12560–12572 (2006).
doi: 10.1021/bi060964o
Trumbore, C. N. Shear-induced amyloid formation in the brain: III. The roles of shear energy and seeding in a proposed shear model. J. Alzheimers Dis. 65, 47–70 (2018).
Petkova, A. T. et al. Self-propagating, molecular-level polymorphism in Alzheimer’s beta-amyloid fibrils. Science 307, 262–265 (2005).
pubmed: 15653506
doi: 10.1126/science.1105850
Dunstan, D. E., Hamilton-Brown, P., Asimakis, P., Ducker, W. & Bertolini, J. Shear-induced structure and mechanics of beta-lactoglobulin amyloid fibrils. Soft Matter 5, 5020–5028 (2009).
doi: 10.1039/b914089a
Teoh, C. L. et al. Shear flow induced changes in apolipoprotein C-II conformation and amyloid fibril formation. Biochemistry 50, 4046–4057 (2011).
pubmed: 21476595
doi: 10.1021/bi2002482
Bekard, I. B., Asimakis, P., Bertolini, J. & Dunstan, D. E. The effects of shear flow on protein structure and function. Biopolymers 95, 733–745 (2011).
pubmed: 21544798
Dunstan, D. E., Hamilton-Brown, P., Asimakis, P., Ducker, W. & Bertolini, J. Shear flow promotes amyloid-{beta} fibrilization. Protein Eng. Des. Sel. 22, 741–746 (2009).
pubmed: 19850675
doi: 10.1093/protein/gzp059
Hill, E. K., Krebs, B., Goodall, D. G., Howlett, G. J. & Dunstan, D. E. Shear flow induces amyloid fibril formation. Biomacromolecules 7, 10–13 (2006).
pubmed: 16398490
doi: 10.1021/bm0505078
Jaspe, J. & Hagen, S. J. Do protein molecules unfold in a simple shear flow? Biophys. J. 91, 3415–3424 (2006).
pubmed: 16891374
pmcid: 1614479
doi: 10.1529/biophysj.106.089367
Herling, T. W., Levin, A., Saar, K. L., Dobson, C. M. & Knowles, T. P. J. Microfluidic approaches for probing amyloid assembly and behaviour. Lab Chip 18, 999–1016 (2018).
pubmed: 29527600
doi: 10.1039/C7LC01241A
Fodera, V., Pagliara, S., Otto, O., Keyser, U. F. & Donald, A. M. Microfluidics reveals a flow-induced large-scale polymorphism of protein aggregates. J. Phys. Chem. Lett. 3, 2803–2807 (2012).
doi: 10.1021/jz301375d
De Angelis, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682–687 (2011).
doi: 10.1038/nphoton.2011.222
Gentile, F. et al. Direct imaging of DNA fibers: the visage of double helix. Nano Lett. 12, 6453–6458 (2012).
pubmed: 23171353
doi: 10.1021/nl3039162
Marini, M. et al. The structure of DNA by direct imaging. Sci. Adv. 1, e1500734 (2015).
pubmed: 26601243
pmcid: 4643809
doi: 10.1126/sciadv.1500734
Coluccio, M. L. et al. Detection of single amino acid mutation in human breast cancer by disordered plasmonic self-similar chain. Sci. Adv. 1, e1500487 (2015).
pubmed: 26601267
pmcid: 4643778
doi: 10.1126/sciadv.1500487
Sperling, M. & Gradzielski, M. Droplets, evaporation and a superhydrophobic surface: simple tools for guiding colloidal particles into complex materials. Gels 3, 15 (2017).
pmcid: 6318646
doi: 10.3390/gels3020015
pubmed: 6318646
Scarratt, L. R. J., Steiner, U. & Neto, C. A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Adv. Colloid Interface Sci. 246, 133–152 (2017).
pubmed: 28577754
doi: 10.1016/j.cis.2017.05.018
Lotito, V. & Zambelli, T. Approaches to self-assembly of colloidal monolayers: a guide for nanotechnologists. Adv. Colloid Interface Sci. 246, 217–274 (2017).
pubmed: 28669390
doi: 10.1016/j.cis.2017.04.003
Pan, Z., Dash, S., Weibel, J. A. & Garimella, S. V. Assessment of water droplet evaporation mechanisms on hydrophobic and superhydrophobic substrates. Langmuir 29, 15831–15841 (2013).
pubmed: 24320680
doi: 10.1021/la4045286
Xu, W., Leeladhar, R., Kang, Y. T. & Choi, C. H. Evaporation kinetics of sessile water droplets on micropillared superhydrophobic surfaces. Langmuir 29, 6032–6041 (2013).
pubmed: 23656600
doi: 10.1021/la400452e
Trantum, J. R. et al. Cross-sectional tracking of particle motion in evaporating drops: flow fields and interfacial accumulation. Langmuir 29, 6221–6231 (2013).
pubmed: 23611508
pmcid: 4915780
doi: 10.1021/la400542x
Kang, K. H., Lim, H. C., Lee, H. W. & Lee, S. J. Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Phys. Fluids 25, 042001 (2013).
Ganguly, P. et al. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. J. Phys. Chem. B 119, 4582–4593 (2015).
pubmed: 25775228
pmcid: 4428543
doi: 10.1021/acs.jpcb.5b00175
Sawaya, M. R. et al. Atomic structures of amyloid cross-beta spines reveal varied steric zippers. Nature 447, 453–457 (2007).
pubmed: 17468747
doi: 10.1038/nature05695
Perez, M. et al. The role of the VQIVYK peptide in tau protein phosphorylation. J. Neurochem. 103, 1447–1460 (2007).
pubmed: 17680993
doi: 10.1111/j.1471-4159.2007.04834.x
Autiero, I., Saviano, M. & Langella, E. In silico investigation and targeting of amyloid beta oligomers of different size. Mol. Biosyst. 9, 2118–2124 (2013).
pubmed: 23708585
doi: 10.1039/c3mb70086k
Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).
doi: 10.1021/ct700301q
Autiero, I., Ruvo, M., Improta, R. & Vitagliano, L. The intrinsic flexibility of the aptamer targeting the ribosomal protein S8 is a key factor for the molecular recognition. Biochim Biophys. Acta Gen. Subj. 1862, 1006–1016 (2018).
pubmed: 29413905
doi: 10.1016/j.bbagen.2018.01.014
Chawla, M., Autiero, I., Oliva, R. & Cavallo, L. Energetics and dynamics of the non-natural fluorescent 4AP:DAP base pair. Phys. Chem. Chem. Phys. 20, 3699–3709 (2018).
pubmed: 29345270
doi: 10.1039/C7CP07400J
pmcid: 29345270
McBride, S. A., Sanford, S. P., Lopez, J. M. & Hirsa, A. H. Shear-induced amyloid fibrillization: the role of inertia. Soft Matter 12, 3461–3467 (2016).
pubmed: 26956731
doi: 10.1039/C5SM02916C
Yuan, T. Z. et al. Shear-stress-mediated refolding of proteins from aggregates and inclusion bodies. Chembiochem 16, 393–396 (2015).
pubmed: 25620679
pmcid: 4388321
doi: 10.1002/cbic.201402427
Moretti, M. et al. Confined laminar flow on a super-hydrophobic surface drives the initial stages of tau protein aggregation. Microelectron. Eng. 191, 54–59 (2018).
doi: 10.1016/j.mee.2018.01.025
Hyers, R. W. Fluid flow effects in levitated droplets. Meas. Sci. Technol. 16, 394–401 (2005).
doi: 10.1088/0957-0233/16/2/010
Mazloomi Moqaddam, A., Derome, D. & Carmeliet, J. Dynamics of contact line pinning and depinning of droplets evaporating on microribs. Langmuir 34, 5635–5645 (2018).
pubmed: 29667830
doi: 10.1021/acs.langmuir.8b00409
Paxson, A. T. & Varanasi, K. K. Self-similarity of contact line depinning from textured surfaces. Nat. Commun. 4, 1492 (2013).
pubmed: 23422660
pmcid: 3586717
doi: 10.1038/ncomms2482
Yu, D. I. et al. Dynamics of contact line depinning during droplet evaporation based on thermodynamics. Langmuir 31, 1950–1957 (2015).
pubmed: 25635466
doi: 10.1021/la504971y
Liimatainen, V. et al. Mapping microscale wetting variations on biological and synthetic water-repellent surfaces. Nat. Commun. 8, 1798 (2017).
pubmed: 29176751
pmcid: 5702616
doi: 10.1038/s41467-017-01510-7
Wells, G. G. et al. Snap evaporation of droplets on smooth topographies. Nat. Commun. 9, 1380 (2018).
pubmed: 29643382
pmcid: 5895805
doi: 10.1038/s41467-018-03840-6
Papageorgiou, D. T. On the breakup of viscous-liquid threads. Phys. Fluids 7, 1529–1544 (1995).
doi: 10.1063/1.868540
Eggers, J. Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69, 865–929 (1997).
doi: 10.1103/RevModPhys.69.865
Fandrich, M. et al. Amyloid fibril polymorphism: a challenge for molecular imaging and therapy. J. Intern. Med. 283, 218–237 (2018).
pubmed: 29360284
pmcid: 5820168
doi: 10.1111/joim.12732
Yu, L., Reutzel-Edens, S. M. & Mitchell, C. A. Crystallization and polymorphism of conformationally flexible molecules: problems, patterns, and strategies. Org. Process Res. Dev. 4, 396–402 (2000).
doi: 10.1021/op000028v
Greenwald, J. & Riek, R. Biology of amyloid: structure, function, and regulation. Structure 18, 1244–1260 (2010).
pubmed: 20947013
doi: 10.1016/j.str.2010.08.009
Wood, R. W. & Collins, G. Raman spectra of a series of normal alcohols and other compounds. Phys. Rev. 42, 0386–0392 (1932).
doi: 10.1103/PhysRev.42.386
Moretti, M. et al. Raman study of lysozyme amyloid fibrils suspended on super-hydrophobic surfaces by shear flow. Microelectron. Eng. 178, 194–198 (2017).
doi: 10.1016/j.mee.2017.05.045
Maiti, N. C., Apetri, M. M., Zagorski, M. G., Carey, P. R. & Anderson, V. E. Raman spectroscopic characterization of secondary structure in natively unfolded proteins: alpha-synuclein. J. Am. Chem. Soc. 126, 2399–2408 (2004).
pubmed: 14982446
doi: 10.1021/ja0356176
Annamalai, K. et al. Polymorphism of amyloid fibrils in vivo. Angew. Chem. Int. Ed. Engl. 55, 4822–4825 (2016).
pubmed: 26954430
pmcid: 4864496
doi: 10.1002/anie.201511524
Huang, A. & Stultz, C. M. Conformational sampling with implicit solvent models: application to the PHF6 peptide in tau protein. Biophys. J. 92, 34–45 (2007).
pubmed: 17040986
doi: 10.1529/biophysj.106.091207
Berriman, J. et al. Tau filaments from human brain and from in vitro assembly of recombinant protein show cross-beta structure. Proc. Natl Acad. Sci. USA 100, 9034–9038 (2003).
pubmed: 12853572
doi: 10.1073/pnas.1530287100
Seidler, P. M. et al. Structure-based inhibitors of tau aggregation. Nat. Chem. 10, 170–176 (2018).
pubmed: 29359764
doi: 10.1038/nchem.2889
Balbirnie, M., Grothe, R. & Eisenberg, D. S. An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated beta-sheet structure for amyloid. Proc. Natl Acad. Sci. USA 98, 2375–2380 (2001).
pubmed: 11226247
doi: 10.1073/pnas.041617698
Maurer-Stroh, S. et al. Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat. Methods 7, 237–242 (2010).
pubmed: 20154676
doi: 10.1038/nmeth.1432
Pitrone, P. G. et al. OpenSPIM: an open-access light-sheet microscopy platform. Nat. Methods 10, 598–599 (2013).
pubmed: 23749304
pmcid: 7450513
doi: 10.1038/nmeth.2507
Tinevez, J. Y. et al. TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90 (2017).
pubmed: 27713081
pmcid: 27713081
doi: 10.1016/j.ymeth.2016.09.016
Morozova-Roche, L. A. et al. Amyloid fibril formation and seeding by wild-type human lysozyme and its disease-related mutational variants. J. Struct. Biol. 130, 339–351 (2000).
pubmed: 10940237
doi: 10.1006/jsbi.2000.4264