Genetically modified rabies virus vector-based bovine ephemeral fever virus vaccine induces protective immune responses against BEFV and RABV in mice.
G protein
bivalent vaccine
bovine ephemeral fever virus
rabies virus
Journal
Transboundary and emerging diseases
ISSN: 1865-1682
Titre abrégé: Transbound Emerg Dis
Pays: Germany
ID NLM: 101319538
Informations de publication
Date de publication:
May 2021
May 2021
Historique:
revised:
06
08
2020
received:
28
06
2020
accepted:
12
08
2020
pubmed:
18
8
2020
medline:
29
6
2021
entrez:
18
8
2020
Statut:
ppublish
Résumé
Bovine ephemeral fever (BEF), caused by the bovine ephemeral fever virus (BEFV), is associated with an acute febrile infection in cattle and widespread in tropical and subtropical areas, leading to great economic losses to cattle and milk industry. However, no efficacious BEF vaccine is currently available in China. Herein, we generated a recombinant rabies virus (RABV) expressing BEFV glycoprotein (LBNSE-BG), utilizing a reverse genetics system based on the recombinant rabies virus strain LBNSE. It was found that mice immunized with LBNSE-BG produced robust neutralizing antibodies against both BEFV and RABV, and developed complete protection from lethal RABV challenge. Further studies showed that LBNSE-BG activated more dendritic cells (DCs), B cells and T cells in immunized mice than the parent virus LBNSE. Collectively, these findings demonstrate that the recombinant LBNSE-BG described here has the potential to be developed as a cost-effective and efficacious bivalent vaccine for cattle use in endemic areas of BEF and rabies.
Substances chimiques
Viral Vaccines
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1353-1362Subventions
Organisme : Shandong University
ID : 2018JC050
Organisme : Ministry of Science and Technology of the People's Republic of China
ID : 2016YFD0501003
Organisme : Ministry of Science and Technology of the People's Republic of China
ID : 2017YFD0501804
Organisme : Ministry of Science and Technology of the People's Republic of China
ID : 2019YFC1200500
Organisme : National Natural Science Foundation of China
ID : 31902308
Organisme : Natural Science Foundation of Shandong Province
ID : 2019GNC106006
Organisme : Natural Science Foundation of Shandong Province
ID : ZR2019QC010
Informations de copyright
© 2020 Wiley-VCH GmbH.
Références
Abreu-Mota, T., Hagen, K. R., Cooper, K., Jahrling, P. B., Tan, G., Wirblich, C., … Schnell, M. J. (2018). Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nature Communications, 9(1), 4223. https://doi.org/10.1038/s41467-018-06741-w
Akakpo, A. J. (2015). Three-day fever. Revue Scientifique et Technique, 34(2), 533-538, 525-532.
Amodio, G., Annoni, A., & Gregori, S.(2015). Dendritic cell immune therapy to break or induce tolerance. Current Stem Cell Reports, 1, 197-205. https://doi.org/10.1007/s40778-015-0024-2
Blaney, J. E., Wirblich, C., Papaneri, A. B., Johnson, R. F., Myers, C. J., Juelich, T. L., … Schnell, M. J. (2011). Inactivated or live-attenuated bivalent vaccines that confer protection against rabies and Ebola viruses. Journal of Virology, 85(20), 10605-10616. https://doi.org/10.1128/JVI.00558-11
Brunker, K., & Mollentze, N. (2018). Rabies virus. Trends in Microbiology, 26(10), 886-887. https://doi.org/10.1016/j.tim.2018.07.001
Chaisirirat, T., Sangthong, P., Arunvipas, P., Petcharat, N., Thangthamniyom, N., Chumsing, W., & Lekcharoensuk, P. (2018). Molecular characterization of bovine ephemeral fever virus in Thailand between 2013 and 2017. Veterinary Microbiology, 227, 1-7. https://doi.org/10.1016/j.vetmic.2018.10.013
Cho, K. A., Kim, J. Y., Kim, H. S., Ryu, K. H., & Woo, S. Y. (2012). Tonsil-derived mesenchymal progenitor cells acquire a follicular dendritic cell phenotype under cytokine stimulation. Cytokine, 59(2), 211-214. https://doi.org/10.1016/j.cyto.2012.04.016
Conzelmann, K. K., Cox, J. H., Schneider, L. G., & Thiel, H. J. (1990). Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology, 175(2), 485-499. https://doi.org/10.1016/0042-6822(90)90433-r
Faber, M., Faber, M. L., Li, J., Preuss, M. A., Schnell, M. J., & Dietzschold, B. (2007). Dominance of a nonpathogenic glycoprotein gene over a pathogenic glycoprotein gene in rabies virus. Journal of Virology, 81(13), 7041-7047. https://doi.org/10.1128/jvi.00357-07
Feng, Y., Wang, W., Guo, J., Alatengheli,,Li, Y., Yang, G., … Tu, C.(2015). Disease outbreaks caused by steppe-type rabies viruses in China. Epidemiology and Infection, 143(6), 1287-1291. https://doi.org/10.1017/s0950268814001952
Gai, W., Zheng, W., Wang, C., Wong, G., Song, Y., & Zheng, X. (2017). Immunization with recombinant rabies virus expressing Interleukin-18 exhibits enhanced immunogenicity and protection in mice. Oncotarget, 8(53), 91505-91515. https://doi.org/10.18632/oncotarget.21065
Hertig, C., Pye, A. D., Hyatt, A. D., Davis, S. S., McWilliam, S. M., Heine, H. G., … Boyle, D. B. (1996). Vaccinia virus-expressed bovine ephemeral fever virus G but not G(NS) glycoprotein induces neutralizing antibodies and protects against experimental infection. Journal of General Virology, 77(Pt 4), 631-640. https://doi.org/10.1099/0022-1317-77-4-631
Hou, P., Zhao, G., He, C., Wang, H., & He, H. (2018). Biopanning of polypeptides binding to bovine ephemeral fever virus G1 protein from phage display peptide library. BMC Veterinary Research, 14(1), 3. https://doi.org/10.1186/s12917-017-1315-x
Johal, J., Gresty, K., Kongsuwan, K., & Walker, P. J. (2008). Antigenic characterization of bovine ephemeral fever rhabdovirus G and GNS glycoproteins expressed from recombinant baculoviruses. Archives of Virology, 153(9), 1657-1665. https://doi.org/10.1007/s00705-008-0164-0
Kim, H. H., Yang, D. K., Seo, B. H., & Cho, I. S. (2018). Serosurvey of rabies virus, canine distemper virus, parvovirus, and influenza virus in military working dogs in Korea. Journal of Veterinary Medical Science, 80(9), 1424-1430. https://doi.org/10.1292/jvms.18-0012
Kun, J., Rongrong, J., Xiangbin, W., Yan, Z., Yiping, D., Gang, L. U., … Shoujun, L. I. (2020). Genetic characterization of bovine ephemeral fever virus in southern China, 2013-2017. Virus Genes, 56(3), 390-395. https://doi.org/10.1007/s11262-020-01740-w
Kurup, D., Fisher, C. R., Smith, T. G., Abreu-Mota, T., Yang, Y., Jackson, F. R., … Schnell, M. J. (2019). Inactivated rabies virus-based Ebola vaccine preserved by vaporization is heat-stable and immunogenic against ebola and protects against rabies challenge. Journal of Infectious Diseases, 220(9), 1521-1528. https://doi.org/10.1093/infdis/jiz332
Lee, F. (2019). Bovine ephemeral fever in Asia: Recent status and research gaps. Viruses, 11(5), 412. https://doi.org/10.3390/v11050412
Liu, Y., Zhang, S., Zhao, J., Zhang, F., Li, N., Lian, H., … Hu, R. (2014). Fox- and raccoon-dog-associated rabies outbreaks in northern China. Virologica Sinica, 29(5), 308-310. https://doi.org/10.1007/s12250-014-3484-0
Ma, X., Monroe, B. P., Cleaton, J. M., Orciari, L. A., Li, Y., Kirby, J. D., … Blanton, J. D. (2018). Rabies surveillance in the United States during 2017. Journal of the American Veterinary Medical Association, 253(12), 1555-1568. https://doi.org/10.2460/javma.253.12.1555
Pasandideh, R., Seyfi Abad Shapouri, M. R., & Beigi Nassiri, M. T.(2018). Immunogenicity of a plasmid DNA vaccine encoding G1 epitope of bovine ephemeral fever virus G glycoprotein in mice. Onderstepoort Journal of Veterinary Research, 85(1), e1-e6. https://doi.org/10.4102/ojvr.v85i1.1617
Rasalingam, P., Rossiter, J. P., Mebatsion, T., & Jackson, A. C. (2005). Comparative pathogenesis of the SAD-L16 strain of rabies virus and a mutant modifying the dynein light chain binding site of the rabies virus phosphoprotein in young mice. Virus Research, 111(1), 55-60. https://doi.org/10.1016/j.virusres.2005.03.010
Schnell, M. J., Foley, H. D., Siler, C. A., McGettigan, J. P., Dietzschold, B., & Pomerantz, R. J. (2000). Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proceedings of the National Academy of Sciences United States of America, 97(7), 3544-3549. https://doi.org/10.1073/pnas.050589197
Shuai, L., Wang, X., Wen, Z., Ge, J., Wang, J., Zhao, D., & Bu, Z. (2017). Genetically modified rabies virus-vectored Ebola virus disease vaccines are safe and induce efficacious immune responses in mice and dogs. Antiviral Research, 146, 36-44. https://doi.org/10.1016/j.antiviral.2017.08.011
Shwiff, S., Hampson, K., & Anderson, A. (2013). Potential economic benefits of eliminating canine rabies. Antiviral Research, 98(2), 352-356. https://doi.org/10.1016/j.antiviral.2013.03.004
Tonbak, S., Berber, E., Yoruk, M. D., Azkur, A. K., Pestil, Z., & Bulut, H. (2013). A large-scale outbreak of bovine ephemeral fever in Turkey, 2012. Journal of Veterinary Medical Science, 75(11), 1511-1514. https://doi.org/10.1292/jvms.13-0085
Walker, P. J., & Klement, E. (2015). Epidemiology and control of bovine ephemeral fever. Veterinary Research, 46, 124. https://doi.org/10.1186/s13567-015-0262-4
Wallace, D. B., & Viljoen, G. J. (2005). Immune responses to recombinants of the South African vaccine strain of lumpy skin disease virus generated by using thymidine kinase gene insertion. Vaccine, 23(23), 3061-3067. https://doi.org/10.1016/j.vaccine.2004.10.006
Wang, F. X., Zhang, S. Q., Zhu, H. W., Yang, Y., Sun, N., Tan, B., … Wen, Y. J. (2014). Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge. Veterinary Microbiology, 174(3-4), 362-371. https://doi.org/10.1016/j.vetmic.2014.10.023
Wen, Y., Wang, H., Wu, H., Yang, F., Tripp, R. A., Hogan, R. J., & Fu, Z. F. (2011). Rabies virus expressing dendritic cell-activating molecules enhances the innate and adaptive immune response to vaccination. Journal of Virology, 85(4), 1634-1644. https://doi.org/10.1128/JVI.01552-10
Willet, M., Kurup, D., Papaneri, A., Wirblich, C., Hooper, J. W., Kwilas, S. A., … Schnell, M. J. (2015). Preclinical development of inactivated rabies virus-based polyvalent vaccine against rabies and filoviruses. Journal of Infectious Diseases, 212(Suppl 2), S414-S424. https://doi.org/10.1093/infdis/jiv251
Wirblich, C., Coleman, C. M., Kurup, D., Abraham, T. S., Bernbaum, J. G., Jahrling, P. B., … Schnell, M. J. (2017). One-health: A safe, efficient, dual-use vaccine for humans and animals against Middle East respiratory syndrome coronavirus and rabies virus. Journal of Virology, 91(2), 02040-16. https://doi.org/10.1128/jvi.02040-16
Xue, X. H., Zheng, X. X., Wang, H. L., Ma, J. Z., Li, L., Gai, W. W., … Xia, X. Z. (2014). An inactivated recombinant rabies CVS-11 virus expressing two copies of the glycoprotein elicits a higher level of neutralizing antibodies and provides better protection in mice. Virus Genes, 48(3), 411-420. https://doi.org/10.1007/s11262-014-1049-9
Yang, D., Yang, M. S., Rhim, H., Han, J. I., Oem, J. K., Kim, Y. H., … Kim, B. (2018). Analysis of five arboviruses and culicoides distribution on cattle farms in Jeollabuk-do, Korea. Korean Journal of Parasitology, 56(5), 477-485. https://doi.org/10.3347/kjp.2018.56.5.477
Zhang, M., Ge, J., Wen, Z., Chen, W., Wang, X., Liu, R., & Bu, Z. (2017). Characterization of a recombinant Newcastle disease virus expressing the glycoprotein of bovine ephemeral fever virus. Archives of Virology, 162(2), 359-367. https://doi.org/10.1007/s00705-016-3078-2
Zhang, S., Hao, M., Feng, N., Jin, H., Yan, F., Chi, H., … Xia, X. (2019). Genetically modified Rabies virus vector-based rift valley fever virus vaccine is safe and induces efficacious immune responses in mice. Viruses, 11(10), 919. https://doi.org/10.3390/v11100919
Zheng, F., & Qiu, C. (2012). Phylogenetic relationships of the glycoprotein gene of bovine ephemeral fever virus isolated from mainland China, Taiwan, Japan, Turkey, Israel and Australia. Virology Journal, 9, 268. https://doi.org/10.1186/1743-422X-9-268