Orthogonal fluorescent chemogenetic reporters for multicolor imaging.


Journal

Nature chemical biology
ISSN: 1552-4469
Titre abrégé: Nat Chem Biol
Pays: United States
ID NLM: 101231976

Informations de publication

Date de publication:
01 2021
Historique:
received: 04 04 2020
accepted: 02 07 2020
pubmed: 12 8 2020
medline: 20 2 2021
entrez: 12 8 2020
Statut: ppublish

Résumé

Spectrally separated fluorophores allow the observation of multiple targets simultaneously inside living cells, leading to a deeper understanding of the molecular interplay that regulates cell function and fate. Chemogenetic systems combining a tag and a synthetic fluorophore provide certain advantages over fluorescent proteins since there is no requirement for chromophore maturation. Here, we present the engineering of a set of spectrally orthogonal fluorogen-activating tags based on the fluorescence-activating and absorption shifting tag (FAST) that are compatible with two-color, live-cell imaging. The resulting tags, greenFAST and redFAST, demonstrate orthogonality not only in their fluorogen recognition capabilities, but also in their one- and two-photon absorption profiles. This pair of orthogonal tags allowed the creation of a two-color cell cycle sensor capable of detecting very short, early cell cycles in zebrafish development and the development of split complementation systems capable of detecting multiple protein-protein interactions by live-cell fluorescence microscopy.

Identifiants

pubmed: 32778846
doi: 10.1038/s41589-020-0611-0
pii: 10.1038/s41589-020-0611-0
pmc: PMC7610487
mid: EMS118352
doi:

Substances chimiques

Benzylidene Compounds 0
Fluorescent Dyes 0
Oligonucleotides 0
Recombinant Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

30-38

Subventions

Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : European Research Council
ID : 724705
Pays : International
Organisme : European Research Council
ID : 863869
Pays : International
Organisme : Wellcome Trust
ID : 203141
Pays : United Kingdom

Références

Tsien, R. Y. Constructing and exploiting the fluorescent protein paintbox (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 48, 5612–5626 (2009).
pubmed: 19565590
Grimm, J. B. et al. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12, 244–250 (2015).
pubmed: 25599551 pmcid: 4344395
Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).
pubmed: 18533659
Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2002).
pubmed: 12469133
Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).
pubmed: 18291317
Gautier, A. & Tebo, A. G. Fluorogenic protein-based strategies for detection, actuation, and sensing. Bio. Essays 67, 509–510 (2018).
Li, C. et al. Dynamic multicolor protein labeling in living cells. Chem. Sci. 8, 5598–5605 (2017).
pubmed: 28970939 pmcid: 5618792
Plamont, M.-A. et al. Small fluorescence-activating and absorption-shifting tag for tunable protein imaging in vivo. Proc. Natl Acad. Sci. USA 113, 497–502 (2016).
pubmed: 26711992
Tebo, A. G., Pimenta, F. M., Zhang, Y. & Gautier, A. Improved chemical-genetic fluorescent markers for live cell microscopy. Biochemistry 57, 5648–5653 (2018).
pubmed: 30204425
Tebo, A. G. & Gautier, A. A split fluorescent reporter with rapid and reversible complementation. Nat. Commun. 10, 2822 (2019).
pubmed: 31249300 pmcid: 6597557
Glasgow, J. E., Salit, M. L. & Cochran, J. R. In vivo site-specific protein tagging with diverse amines using an engineered sortase variant. J. Am. Chem. Soc. 138, 7496–7499 (2016).
pubmed: 27280683
Thomas, F. et al. De novo-designed α-helical barrels as receptors for small molecules. ACS Synth. Biol. 7, 1808–1816 (2018).
pubmed: 29944338
Obexer, R. et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9, 50–56 (2017).
pubmed: 27995916
Martínez, L. et al. Gaining ligand selectivity in thyroid hormone receptors via entropy. Proc. Natl Acad. Sci. USA 106, 20717–20722 (2009).
pubmed: 19926848
Das, R. et al. Dynamically driven ligand selectivity in cyclic nucleotide binding domains. J. Biol. Chem. 284, 23682–23696 (2009).
pubmed: 19403523 pmcid: 2749143
Pessoa, J., Fonseca, F., Furini, S. & Morais-Cabral, J. H. Determinants of ligand selectivity in a cyclic nucleotide-regulated potassium channel. J. Gen. Physiol. 144, 41–54 (2014).
pubmed: 24981229 pmcid: 4076524
Brogi, S., Tafi, A., Désaubry, L. & Nebigil, C. G. Discovery of GPCR ligands for probing signal transduction pathways. Front. Pharmacol. 5, 255 (2014).
pubmed: 25506327 pmcid: 4246677
Engelowski, E. et al. Synthetic cytokine receptors transmit biological signals using artificial ligands. Nat. Commun. 9, 2034 (2018).
pubmed: 29789554 pmcid: 5964073
Grimm, J. B. et al. A general method to fine-tune fluorophores for live-cell and in vivo imaging. Nat. Methods 14, 987–994 (2017).
pubmed: 28869757 pmcid: 5621985
Chen, X. et al. Visualizing RNA dynamics in live cells with bright and stable fluorescent RNAs. Nat. Biotechnol. 37, 1287–1293 (2019).
pubmed: 31548726
Philip, A. F., Nome, R. A., Papadantonakis, G. A., Scherer, N. F. & Hoff, W. D. Spectral tuning in photoactive yellow protein by modulation of the shape of the excited state energy surface. Proc. Natl Acad. Sci. USA 107, 5821–5826 (2010).
pubmed: 20220103
Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).
pubmed: 15558047
Pimenta, F. M. et al. Chromophore renewal and fluorogen-binding tags: a match made to last. Sci. Rep. 7, 12316 (2017).
pubmed: 28951577 pmcid: 5615068
Padilla-Parra, S., Audugé, N., Tramier, M. & Coppey-Moisan, M. Time-domain fluorescence lifetime imaging microscopy: a quantitative method to follow transient protein–protein interactions in living cells. Cold Spring Harb. Protoc. 2015, 508–521 (2015).
Dertinger, T., Colyer, R., Iyer, G., Weiss, S. & Enderlein, J. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). Proc. Natl Acad. Sci. USA 106, 22287–22292 (2009).
pubmed: 20018714
Dedecker, P., Mo, G. C. H., Dertinger, T. & Zhang, J. Widely accessible method for superresolution fluorescence imaging of living systems. Proc. Natl Acad. Sci. USA 109, 10909–10914 (2012).
pubmed: 22711840
Moeyaert, B. & Dedecker, P. PcSOFI as a smart label-based superresolution microscopy technique. Methods Mol. Biol. 1148, 261–276 (2014).
pubmed: 24718807
Zhang, X. et al. Development of a reversibly switchable fluorescent protein for super-resolution optical fluctuation imaging (SOFI). ACS Nano 9, 2659–2667 (2015).
pubmed: 25695314
Moeyaert, B., Vandenberg, W. & Dedecker, P. SOFIevaluator: a strategy for the quantitative quality assessment of SOFI data. Biomed. Opt. Express 11, 636 (2020).
pubmed: 32133218 pmcid: 7041449
Vandenberg, W., Leutenegger, M., Duwé, S. & Dedecker, P. An extended quantitative model for super-resolution optical fluctuation imaging (SOFI). Opt. Express 27, 25749–25766 (2019).
pubmed: 31510441
Sakaue-Sawano, A. et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498 (2008).
pubmed: 18267078
Sugiyama, M. et al. Illuminating cell-cycle progression in the developing zebrafish embryo. Proc. Natl Acad. Sci. USA 106, 20812–20817 (2009).
pubmed: 19923430
Sakaue-Sawano, A. et al. Genetically encoded tools for optical dissection of the mammalian cell cycle. Mol. Cell 68, 626–640.e5 (2017).
pubmed: 29107535
Kimmel, C. B. & Law, R. D. Cell lineage of zebrafish blastomeres. I. Cleavage pattern and cytoplasmic bridges between cells. Developmental Biol. 108, 78–85 (1985).
Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. K. Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008).
pubmed: 18845710
Olivier, N. et al. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science 329, 967–971 (2010).
pubmed: 20724640
Mendieta-Serrano, M. A., Schnabel, D., Lomelí, H. & Salas-Vidal, E. Cell proliferation patterns in early zebrafish development. Anat. Rec. 296, 759–773 (2013).
Langley, A. R., Smith, J. C., Stemple, D. L. & Harvey, S. A. New insights into the maternal to zygotic transition. Development 141, 3834–3841 (2014).
pubmed: 25294937
Erdmann, R. S. et al. Labeling strategies matter for super-resolution microscopy: a comparison between HaloTags and SNAP-tags. Cell Chem. Biol. 26, 584–592.e6 (2019).
pubmed: 30745239 pmcid: 6474801
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
Gietz, R. D. & Schiestl, R. H. High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31–34 (2007).
pubmed: 17401334
Duwé, S., Vandenberg, W. & Dedecker, P. Live-cell monochromatic dual-label sub-diffraction microscopy by mt-pcSOFI. Chem. Commun. 53, 7242–7245 (2017).
Pardon, E. et al. A general protocol for the generation of Nanobodies for structural biology. Nat. Protoc. 9, 674–693 (2014).
pubmed: 24577359 pmcid: 4297639
Dedecker, P., Duwé, S., Neely, R. K. & Zhang, J. Localizer: fast, accurate, open-source, and modular software package for superresolution microscopy. J. Biomed. Opt. 17, 126008 (2012).
pubmed: 23208219 pmcid: 3512108

Auteurs

Alison G Tebo (AG)

Sorbonne University, École Normale Supérieure, PSL University, CNRS, Laboratoire des biomolécules (LBM), Paris, France.
PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.
Janelia Farms Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.

Benjamien Moeyaert (B)

Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Heverlee, Belgium.

Marion Thauvin (M)

Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.
Sorbonne University, Paris, France.

Irene Carlon-Andres (I)

Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, UK.

Dorothea Böken (D)

PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France.

Michel Volovitch (M)

Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.
Department of Biology, École Normale Supérieure, PSL University, Paris, France.

Sergi Padilla-Parra (S)

Division of Structural Biology, University of Oxford, Wellcome Centre for Human Genetics, Oxford, UK.
Department of Infectious Diseases, Faculty of Life Sciences & Medicine, King's College London, London, UK.
Randall Centre for Cell and Molecular Biology, King's College London, London, UK.

Peter Dedecker (P)

Laboratory for Nanobiology, Department of Chemistry, KU Leuven, Heverlee, Belgium.

Sophie Vriz (S)

Center for Interdisciplinary Research, Collège de France, CNRS, INSERM, PSL University, Paris, France.
Faculty of Sciences, Université de Paris, Paris, France.

Arnaud Gautier (A)

Sorbonne University, École Normale Supérieure, PSL University, CNRS, Laboratoire des biomolécules (LBM), Paris, France. arnaud.gautier@sorbonne-universite.fr.
PASTEUR, Department of Chemistry, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France. arnaud.gautier@sorbonne-universite.fr.
Institut Universitaire de France, Paris, France. arnaud.gautier@sorbonne-universite.fr.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH