Coevolutionary Analysis Reveals a Conserved Dual Binding Interface between Extracytoplasmic Function σ Factors and Class I Anti-σ Factors.

RNA polymerase coevolutionary analysis comparative genomics computational biology direct coupling analysis gene regulation transcription factors

Journal

mSystems
ISSN: 2379-5077
Titre abrégé: mSystems
Pays: United States
ID NLM: 101680636

Informations de publication

Date de publication:
04 Aug 2020
Historique:
entrez: 6 8 2020
pubmed: 6 8 2020
medline: 6 8 2020
Statut: epublish

Résumé

Extracytoplasmic function σ factors (ECFs) belong to the most abundant signal transduction mechanisms in bacteria. Among the diverse regulators of ECF activity, class I anti-σ factors are the most important signal transducers in response to internal and external stress conditions. Despite the conserved secondary structure of the class I anti-σ factor domain (ASDI) that binds and inhibits the ECF under noninducing conditions, the binding interface between ECFs and ASDIs is surprisingly variable between the published cocrystal structures. In this work, we provide a comprehensive computational analysis of the ASDI protein family and study the different contact themes between ECFs and ASDIs. To this end, we harness the coevolution of these diverse protein families and predict covarying amino acid residues as likely candidates of an interaction interface. As a result, we find two common binding interfaces linking the first alpha-helix of the ASDI to the DNA-binding region in the σ

Identifiants

pubmed: 32753504
pii: 5/4/e00310-20
doi: 10.1128/mSystems.00310-20
pmc: PMC7406223
pii:
doi:

Types de publication

Journal Article

Langues

eng

Informations de copyright

Copyright © 2020 Casas-Pastor et al.

Références

Genes Dev. 1999 Sep 15;13(18):2449-61
pubmed: 10500101
Nat Rev Genet. 2013 Apr;14(4):249-61
pubmed: 23458856
Mol Microbiol. 2009 Nov;74(3):557-81
pubmed: 19737356
Mol Microbiol. 2019 Aug;112(2):498-514
pubmed: 30990934
J Mol Biol. 2003 Oct 17;333(2):461-72
pubmed: 14529630
Nucleic Acids Res. 2015 Jul 1;43(W1):W401-7
pubmed: 25969446
Nucleic Acids Res. 2019 Jan 8;47(D1):D427-D432
pubmed: 30357350
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):1995-2000
pubmed: 20133844
J Mol Biol. 2014 Jun 12;426(12):2313-27
pubmed: 24727125
Nucleic Acids Res. 2016 Jul 8;44(W1):W242-5
pubmed: 27095192
Biochem Biophys Res Commun. 2020 Jan 22;521(4):900-906
pubmed: 31711645
Curr Opin Struct Biol. 2015 Feb;30:71-78
pubmed: 25678040
Genome Biol. 2015 Jun 16;16:124
pubmed: 26076734
Bioinformatics. 2009 Jun 1;25(11):1422-3
pubmed: 19304878
PLoS Biol. 2006 Sep;4(9):e269
pubmed: 16903784
J Bacteriol. 2018 May 9;200(11):
pubmed: 29358498
FEBS J. 2019 Dec;286(24):4982-4994
pubmed: 31297938
J Mol Biol. 2010 Jan 29;395(4):686-704
pubmed: 19895816
Mol Syst Biol. 2011 Oct 11;7:539
pubmed: 21988835
J Mol Biol. 2000 Jun 2;299(2):283-93
pubmed: 10860738
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Genes Dev. 2006 Jul 15;20(14):1911-22
pubmed: 16816000
Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):E1733-42
pubmed: 22670053
J Bacteriol. 2015 Aug 1;197(15):2517-35
pubmed: 25986905
Nature. 1969 Jan 4;221(5175):43-6
pubmed: 4882047
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3467-72
pubmed: 19218445
J Bacteriol. 2011 Aug;193(15):3851-62
pubmed: 21665979
J Bacteriol. 2006 Mar;188(5):1935-42
pubmed: 16484205
Mol Gen Genet. 1996 Mar 7;250(4):455-65
pubmed: 8602163
Proc Natl Acad Sci U S A. 2009 Jan 6;106(1):67-72
pubmed: 19116270
Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37
pubmed: 21593126
Mol Microbiol. 1997 Apr;24(2):355-71
pubmed: 9159522
Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7573-7
pubmed: 8052622
Acta Crystallogr D Biol Crystallogr. 2014 Apr;70(Pt 4):1026-36
pubmed: 24699647
J Bacteriol. 2012 Dec;194(23):6419-30
pubmed: 23002222
J Bacteriol. 2001 May;183(9):2952-6
pubmed: 11292818
J Mol Biol. 2007 Sep 21;372(3):649-59
pubmed: 17681541
Bioinformatics. 2003 Nov 22;19(17):2308-10
pubmed: 14630660
Mol Cell. 2004 Apr 9;14(1):127-38
pubmed: 15068809
Mol Cell. 2003 Apr;11(4):1067-78
pubmed: 12718891
J Bacteriol. 1994 Apr;176(7):1813-20
pubmed: 8144446
Mol Microbiol. 2011 Jun;80(6):1598-612
pubmed: 21564331
Nucleic Acids Res. 2019 Jul 2;47(W1):W636-W641
pubmed: 30976793
Curr Opin Microbiol. 2017 Apr;36:128-137
pubmed: 28575802
Biomolecules. 2015 Jun 26;5(3):1245-65
pubmed: 26131973
Mol Biol Evol. 2015 Jan;32(1):268-74
pubmed: 25371430
PLoS One. 2017 Mar 20;12(3):e0174284
pubmed: 28319136
Nucleic Acids Res. 2018 Aug 21;46(14):7405-7417
pubmed: 29905823
Mol Cell. 2007 Sep 7;27(5):793-805
pubmed: 17803943
J Mol Biol. 2011 May 13;408(4):766-79
pubmed: 21414325
Bioinformatics. 2011 Apr 15;27(8):1190-1
pubmed: 21478197
PLoS One. 2014 Mar 24;9(3):e92721
pubmed: 24663061
J Comput Chem. 2014 Mar 30;35(8):672-81
pubmed: 24523197
Mol Syst Biol. 2013 Oct 29;9:702
pubmed: 24169405
PLoS Genet. 2018 Jul 18;14(7):e1007527
pubmed: 30020925
Proc Natl Acad Sci U S A. 1983 Feb;80(3):726-30
pubmed: 6572363
Nat Commun. 2019 Mar 11;10(1):1153
pubmed: 30858373
Nat Commun. 2016 Jul 19;7:12194
pubmed: 27432510
J Mol Biol. 2001 Oct 26;313(3):485-99
pubmed: 11676534

Auteurs

Delia Casas-Pastor (D)

Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.

Angelika Diehl (A)

Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.
School of Molecular Sciences, University of Western Australia, Perth, Australia.

Georg Fritz (G)

Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany georg.fritz@uwa.edu.au.
School of Molecular Sciences, University of Western Australia, Perth, Australia.

Classifications MeSH