Identification of resistance in Escherichia coli and Klebsiella pneumoniae using excitation-emission matrix fluorescence spectroscopy and multivariate analysis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
03 08 2020
Historique:
received: 01 07 2019
accepted: 09 06 2020
entrez: 5 8 2020
pubmed: 5 8 2020
medline: 7 5 2021
Statut: epublish

Résumé

Klebsiella pneumoniae and Escherichia coli are part of the Enterobacteriaceae family, being common sources of community and hospital infections and having high antimicrobial resistance. This resistance profile has become the main problem of public health infections. Determining whether a bacterium has resistance is critical to the correct treatment of the patient. Currently the method for determination of bacterial resistance used in laboratory routine is the antibiogram, whose time to obtain the results can vary from 1 to 3 days. An alternative method to perform this determination faster is excitation-emission matrix (EEM) fluorescence spectroscopy combined with multivariate classification methods. In this paper, Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA) and Support Vector Machines (SVM), coupled with dimensionality reduction and variable selection algorithms: Principal Component Analysis (PCA), Genetic Algorithm (GA), and the Successive Projections Algorithm (SPA) were used. The most satisfactory models achieved sensitivity and specificity rates of 100% for all classes, both for E. coli and for K. pneumoniae. This finding demonstrates that the proposed methodology has promising potential in routine analyzes, streamlining the results and increasing the chances of treatment efficiency.

Identifiants

pubmed: 32747745
doi: 10.1038/s41598-020-70033-x
pii: 10.1038/s41598-020-70033-x
pmc: PMC7400627
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

12994

Références

Susanto, W., Kong, K.-H., Hua, K.-F., Wu, S.-H. & Lam, Y. Synthesis of the trisaccharide repeating unit of capsular polysaccharide from Klebsiella pneumoniae. Tetrahedron Lett. 60, 288–291 (2019).
doi: 10.1016/j.tetlet.2018.12.031
Kumar, H. & Mandal, P. K. Synthetic routes toward pentasaccharide repeating unit corresponding to the o-antigen of Escherichia coli o181. Tetrahedron Lett. 60, 860–863 (2019).
doi: 10.1016/j.tetlet.2019.02.027
Li, X. et al. Disruption of blood-brain barrier by an Escherichia coli isolated from canine septicemia and meningoencephali-tis. Comp. Immunol. Microbiol. Infect. Dis. 63, 44–50 (2019).
doi: 10.1016/j.cimid.2019.01.002
Mukherjee, P. et al. Studies on formulation of a combination heat killed immunogen from diarrheagenic Escherichia coli and vibrio cholerae in ritard model. Microbes Infect. 21, 368–376 (2019).
doi: 10.1016/j.micinf.2019.02.007
Alharbi, N. S. et al. Prevalence of Escherichia coli strains resistance to antibiotics in wound infections and raw milk. Saudi J. Biol. Sci. 26, 1557–1562 (2018).
doi: 10.1016/j.sjbs.2018.11.016
Rodrigues, C. et al. Description of Klebsiella africanensis sp. nov., Klebsiella variicola subsp. tropicalensis subsp. nov. and Klebsiella variicola subsp. variicola subsp. nov.. Res. Microbiol. 170, 165–170 (2019).
doi: 10.1016/j.resmic.2019.02.003
López-Camacho, E. et al. Meropenem heteroresistance in clinical isolates of oxa-48-producing Klebsiella pneumoniae. Diagn. Microbiol. Infect. Dis. 93, 162–166 (2019).
doi: 10.1016/j.diagmicrobio.2018.09.008
Li, J., Li, B. & Liu, M. One-step synthesis of mannose-modified polyethyleneimine copolymer particles as fluorescent probes for the detection of Escherichia coli. Sens. Actuators B Chem. 280, 171–176 (2019).
doi: 10.1016/j.snb.2018.10.018
Wang, X. et al. A metabolomics-based method for studying the effect of yfcc gene in Escherichia coli on metabolism. Anal. Biochem. 451, 48–55 (2014).
doi: 10.1016/j.ab.2014.01.018
Ya-li, F. et al. Isolation and characterization of an electrochemically active and cyanide-degrading bacterium isolated from a microbial fuel cell. RSC Adv. 4, 36458–36463 (2014).
doi: 10.1039/C4RA04090B
Fonseca, E. L. et al. A one-step multiplex pcr to identify Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae in the clinical routine. Diagn. Microbiol. Infect. disease 87, 315–317 (2017).
doi: 10.1016/j.diagmicrobio.2017.01.005
Siripatrawan, U., Makino, Y., Kawagoe, Y. & Oshita, S. Near infrared spectroscopy integrated with chemometrics for rapid detection of E. coli atcc 25922 and E. coli k12. Sens. Actuators B Chem. 148, 366–370 (2010).
doi: 10.1016/j.snb.2010.05.024
Kusić, D., Rösch, P. & Popp, J. Fast label-free detection of legionella spp in biofilms by applying immunomagnetic beads and Raman spectroscopy. Syst. Appl. Microbiol. 39, 132–140 (2016).
doi: 10.1016/j.syapm.2016.01.002
Dieckmann, R. et al. Rapid characterisation of Klebsiella oxytoca isolates from contaminated liquid hand soap using mass spectrometry, FTIR and Raman spectroscopy. Faraday Discuss. 187, 353–375 (2016).
doi: 10.1039/C5FD00165J
Alam, M. Z., Aqil, F., Ahmad, I. & Ahmad, S. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater. Braz. J. Microbiol. 44, 799–806 (2013).
doi: 10.1590/S1517-83822013000300021
Olorunmola, F. O., Kolawole, D. O. & Lamikanra, A. Antibiotic resistance and virulence properties in Escherichia coli strains from cases of urinary tract infections. Afr. J. Infect. Dis. 7, 1–7 (2013).
pubmed: 24381720 pmcid: 3647523
Levison, M. E. & Levison, J. H. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect. Dis. Clin. 23, 791–815 (2009).
doi: 10.1016/j.idc.2009.06.008
Siripatrawan, U., Makino, Y., Kawagoe, Y. & Oshita, S. Rapid detection of Escherichia coli contamination in packaged fresh spinach using hyperspectral imaging. Talanta 85, 276–281 (2011).
doi: 10.1016/j.talanta.2011.03.061
Opačić, M., Hesp, B. H., Fusetti, F., Dijkstra, B. W. & Broos, J. Structural investigation of the transmembrane c domain of the mannitol permease from Escherichia coli using 5-ftrp fluorescence spectroscopy. Biochimica et Biophys Acta Biomembranes 1818, 861–868 (2012).
doi: 10.1016/j.bbamem.2011.11.001
Romantsov, T., Fishov, I. & Krichevsky, O. Internal structure and dynamics of isolated Escherichia coli nucleoids assessed by fluorescence correlation spectroscopy. Biophys. J. 92, 2875–2884 (2007).
doi: 10.1529/biophysj.106.095729
Sun, J. et al. DNA biosensor-based on fluorescence detection of E. coli o157: H7 by au@ ag nanorods. Biosens. Bioelectron. 70, 239–245 (2015).
doi: 10.1016/j.bios.2015.03.009
Liu, J., Yu, G. & Liu, Y. Graph-based sparse linear discriminant analysis for high-dimensional classification. J. Multivar. Anal. 171, 250–269 (2019).
doi: 10.1016/j.jmva.2018.12.007
Gaynanova, I. & Wang, T. Sparse quadratic classification rules via linear dimension reduction. J. Multivar. Anal. 169, 278–299 (2019).
doi: 10.1016/j.jmva.2018.09.011
Tang, L., Tian, Y. & Pardalos, P. M. A novel perspective on multiclass classification: Regular simplex support vector machine. Inf. Sci. 480, 324–338 (2019).
doi: 10.1016/j.ins.2018.12.026
Tran, N. M., Burdejová, P., Ospienko, M. & Härdle, W. K. Principal component analysis in an asymmetric norm. J. Multivar. Anal. 171, 1–21 (2019).
doi: 10.1016/j.jmva.2018.10.004
Feng, Y., Zhao, T., Wang, M. & Owen, D. Characterising particle packings by principal component analysis. Comput. Methods Appl. Mech. Eng. 340, 70–89 (2018).
doi: 10.1016/j.cma.2018.05.018
Islam, M. L., Shatabda, S., Rashid, M. A., Khan, M. G. & Rahman, M. S. Protein structure prediction from inaccurate and sparse NMR data using an enhanced genetic algorithm. Comput. Biol. Chem. 79, 6–15 (2019).
doi: 10.1016/j.compbiolchem.2019.01.004
Milanez, K. D. T. M., Nóbrega, T. C. A., Nascimento, D. S., Galvão, R. K. H. & Pontes, M. J. C. Selection of robust variables for transfer of classification models employing the successive projections algorithm. Anal. Chim. Acta 984, 76–85 (2017).
doi: 10.1016/j.aca.2017.07.037
Morais, C. L., Lima, K. M. & Martin, F. L. Uncertainty estimation and misclassification probability for classification models based on discriminant analysis and support vector machines. Anal. Chim. Acta 1063, 40–46 (2019).
doi: 10.1016/j.aca.2018.09.022
Costa, F. S. et al. Attenuated total reflection fourier transform-infrared (ATR-FTIR) spectroscopy as a new technology for discrimination between Cryptococcus neoformans and Cryptococcus gattii. Anal. Methods 8, 7107–7115 (2016).
doi: 10.1039/C6AY01893A
Silva, H. F. et al. On the synergy between silver nanoparticles and doxycycline towards the inhibition of Staphylococcus aureus growth. RSC Adv. 8, 23578–23584 (2018).
doi: 10.1039/C8RA02176G
Bahram, M., Bro, R., Stedmon, C. & Afkhami, A. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Am. J. Chemom. Soc. 20, 99–105 (2006).
da Silva, A. C. et al. Two-dimensional linear discriminant analysis for classification of three-way chemical data. Anal. Chim. Acta 938, 53–62 (2016).
doi: 10.1016/j.aca.2016.08.009
Morais, C. L. & Lima, K. M. Comparing unfolded and two-dimensional discriminant analysis and support vector machines for classification of EEM data. Chemom. Intell. Lab. Syst. 170, 1–12 (2017).
doi: 10.1016/j.chemolab.2017.09.001
Kennard, R. W. & Stone, L. A. Computer aided design of experiments. Technometrics 11, 137–148 (1969).
doi: 10.1080/00401706.1969.10490666

Auteurs

Fernanda S L Costa (FSL)

Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil.

Caio C R Bezerra (CCR)

Laboratory of Mycobateria, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil.

Renato M Neto (RM)

Laboratory of Mycobateria, Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil.

Camilo L M Morais (CLM)

Lancashire Teaching Hospitals NHS Trust, Fulwood, Preston, PR2 9HT, UK.

Kássio M G Lima (KMG)

Institute of Chemistry, Biological Chemistry and Chemometrics, Federal University of Rio Grande do Norte, Natal, RN, 59072-970, Brazil. kassiolima@gmail.com.

Articles similaires

Humans Middle Aged Female Male Surveys and Questionnaires
Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Adolescent Child Female Humans Male

Classifications MeSH