Crystal structure of chalcone synthase, a key enzyme for isoflavonoid biosynthesis in soybean.
chalcone synthase
flavonoid
isoflavonoid
metabolon
soybean
Journal
Proteins
ISSN: 1097-0134
Titre abrégé: Proteins
Pays: United States
ID NLM: 8700181
Informations de publication
Date de publication:
29 Jul 2020
29 Jul 2020
Historique:
received:
15
04
2020
revised:
12
07
2020
accepted:
26
07
2020
pubmed:
30
7
2020
medline:
30
7
2020
entrez:
30
7
2020
Statut:
aheadofprint
Résumé
Isoflavonoid is one of the groups of flavonoids that play pivotal roles in the survival of land plants. Chalcone synthase (CHS), the first enzyme of the isoflavonoid biosynthetic pathway, catalyzes the formation of a common isoflavonoid precursor. We have previously reported that an isozyme of soybean CHS (termed GmCHS1) is a key component of the isoflavonoid metabolon, a protein complex to enhance efficiency of isoflavonoid production. Here, we determined the crystal structure of GmCHS1 as a first step of understanding the metabolon structure, as well as to better understand the catalytic mechanism of GmCHS1.
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : Japan Agency for Medical Research and Development
ID : AMED-BINDS/JP20am0101070
Organisme : Japan Society for the Promotion of Science
ID : KAKENHI/18H03938
Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. Front Plant Sci. 2014;5:620.
Waki T, Yoo D, Fujino N, et al. Identification of protein-protein interactions of isoflavonoid biosynthetic enzymes with 2-hydroxyisoflavanone synthase in soybean (Glycine max (L.) Merr.). Biochem Biophys Res Commun. 2016;469:546-551.
Mameda R, Waki T, Kawai Y, Takahashi S, Nakayama T. Involvement of chalcone reductase in the soybean isoflavone metabolon: identification of GmCHR5, which interacts with 2-hydroxyisoflavanone synthase. Plant J. 2018;96:86-74.
Waki T, Mameda R, Nakano T, et al. A conserved strategy of chalcone isomerase-like protein to rectify promiscuous chalcone synthase specificity. Nat Commun. 2020;11:870.
Hirata K, Yamashita K, Ueno G, et al. ZOO: an automatic data-collection system for high-throughput structure analysis in protein microcrystallography. Acta Crystallogr D Struct Biol. 2019;75:138-150.
Yamashita K, Hirata K, Yamamoto M. KAMO: towards automated data processing for microcrystals. Acta Crystallogr D Struct Biol. 2018;74:441-449.
Winter G, Waterman DG, Parkhurst JM, et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr D Struct Biol. 2018;74:85-97.
Kabsch W. Integration, scaling, space-group assignment and post-refinement. Acta Cryst D Biol Crystallogr. 2010;66:125-132.
Vagin A, Teplyakov A. Molecular replacement with MOLREP. Acta Crystallogr D Biol Crystallogr. 2010;66:22-25.
Emsley P, Lohkamp B, Scott WG, Cowtan K. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010;66:486-501.
Murshudov GN, Skubák P, Lebedev AA, et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011;67:355-367.
PyMOL. The PyMOL Molecular Graphics System. Version 2.0. Schrödinger, LLC.
Tian W, Chen C, Lei X, Zhao J, Liang J. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 2018;46:363-367.
Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP. Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol. 1999;6:775-784.
Liou G, Chiang YC, Wang Y, Weng JK. Mechanistic basis for the evolution of chalcone synthase catalytic cysteine reactivity in land plants. J Biol Chem. 2018;293:18601-18612.