Distribution of heavy metal resistance elements in Canadian Salmonella 4,[5],12:i:- populations and association with the monophasic genotypes and phenotype.
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
05
03
2020
accepted:
06
07
2020
entrez:
28
7
2020
pubmed:
28
7
2020
medline:
23
9
2020
Statut:
epublish
Résumé
Salmonella 4,[5],12:i:- are monophasic S. Typhimurium variants incapable of producing the second-phase flagellar antigen. They have emerged since the mid-1990s to become one of the most prevalent Salmonella serotypes causing human disease world-wide. Multiple genetic events associated with different genetic elements can result in the monophasic phenotype. Several jurisdictions have reported the emergence of a Salmonella 4,[5],12:i:- clone with SGI-4 and a genetic element (MREL) encoding a mercury resistance operon and antibiotic resistance loci that disrupts the second phase antigen region near the iroB locus in the Salmonella genome. We have sequenced 810 human and animal Canadian Salmonella 4,[5],12:i:- isolates and determined that isolates with SGI-4 and the mercury resistance element (MREL; also known as RR1&RR2) constitute several global clades containing various proportions of Canadian, US, and European isolates. Detailed analysis of the data provides a clearer picture of how these heavy metal elements interact with bacteria within the Salmonella population to produce the monophasic phenotype. Insertion of the MREL near iroB is associated with several deletions and rearrangements of the adjacent flaAB hin region, which may be useful for defining human case clusters that could represent outbreaks. Plasmids carrying genes encoding silver, copper, mercury, and antimicrobial resistance appear to be derived from IS26 mediated acquisition of these genes from genomes carrying SGI-4 and the MREL. Animal isolates with the mercury and As/Cu/Ag resistance elements are strongly associated with porcine sources in Canada as has been shown previously for other jurisdictions. The data acquired in these investigations, as well as from the extensive literature on the subject, may aid source attribution in outbreaks of the organism and interventions to decrease the prevalence of this clone and reduce its impact on human disease.
Identifiants
pubmed: 32716946
doi: 10.1371/journal.pone.0236436
pii: PONE-D-20-06506
pmc: PMC7384650
doi:
Substances chimiques
Antigens, Bacterial
0
Metals, Heavy
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0236436Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
J Clin Microbiol. 1999 Oct;37(10):3425
pubmed: 10488227
Genet Mol Res. 2015 Dec 29;14(4):19057-65
pubmed: 26782556
Bioinformatics. 2010 Dec 15;26(24):3125-6
pubmed: 20956244
J Clin Microbiol. 2010 Jun;48(6):2103-9
pubmed: 20410351
Foodborne Pathog Dis. 2014 Jun;11(6):497-9
pubmed: 24666380
Emerg Infect Dis. 2018 Apr;24(4):751-753
pubmed: 29553318
Genome Biol Evol. 2016 Feb 17;8(3):811-26
pubmed: 26893455
J Comput Biol. 2012 May;19(5):455-77
pubmed: 22506599
Foodborne Pathog Dis. 2014 May;11(5):366-72
pubmed: 24673107
Euro Surveill. 2010 Jun 03;15(22):19580
pubmed: 20546690
J Vet Med Sci. 2011 Feb;73(2):241-4
pubmed: 20938106
J Antimicrob Chemother. 2012 Jan;67(1):111-4
pubmed: 21990047
Foodborne Pathog Dis. 2020 Feb;17(2):87-97
pubmed: 31532231
Front Microbiol. 2018 Apr 17;9:715
pubmed: 29719530
Antimicrob Agents Chemother. 2019 Aug 23;63(9):
pubmed: 31209002
J Clin Microbiol. 2001 Aug;39(8):2981-3
pubmed: 11474028
Emerg Infect Dis. 2019 Jul;25(7):1377-1379
pubmed: 31211677
J Clin Microbiol. 2010 Dec;48(12):4563-6
pubmed: 20943866
Microb Genom. 2017 Jun 8;3(6):e000116
pubmed: 29026651
Front Microbiol. 2016 May 10;7:680
pubmed: 27242707
Epidemiol Infect. 2017 Jun;145(8):1513-1526
pubmed: 28241896
Microbiol Resour Announc. 2020 Jun 11;9(24):
pubmed: 32527782
Front Microbiol. 2019 May 24;10:1118
pubmed: 31178839
PLoS One. 2014 Aug 05;9(8):e104380
pubmed: 25093666
Int J Antimicrob Agents. 2015 Jun;45(6):610-6
pubmed: 25816978
Emerg Infect Dis. 2004 Jan;10(1):131-6
pubmed: 15078609
BMC Genomics. 2013 Oct 20;14:718
pubmed: 24138507
Foodborne Pathog Dis. 2014 Aug;11(8):664-6
pubmed: 24823892
Rev Inst Med Trop Sao Paulo. 2006 Jul-Aug;48(4):179-84
pubmed: 17119671
Antimicrob Agents Chemother. 2018 Apr 26;62(5):
pubmed: 29439975
Appl Environ Microbiol. 2015 May 1;81(9):3169-75
pubmed: 25724958
Plasmid. 2004 Nov;52(3):182-202
pubmed: 15518875
Sci Rep. 2016 May 04;6:25312
pubmed: 27143648
Microbiology. 2006 Jul;152(Pt 7):2137-2147
pubmed: 16804187
J Bacteriol. 1998 Apr;180(8):2220-3
pubmed: 9555907
Front Microbiol. 2017 Aug 07;8:1459
pubmed: 28824587
Foodborne Pathog Dis. 2013 Jun;10(6):549-54
pubmed: 23614800
J Clin Microbiol. 2002 Jun;40(6):2074-8
pubmed: 12037067
J Antimicrob Chemother. 2013 Sep;68(9):1982-6
pubmed: 23710071
Foodborne Pathog Dis. 2016 Nov;13(11):633-641
pubmed: 27768382
Can J Infect Dis Med Microbiol. 2009 Fall;20(3):79-87
pubmed: 20808465
Braz J Infect Dis. 2002 Oct;6(5):244-51
pubmed: 12495606
PLoS One. 2015 Sep 11;10(9):e0137967
pubmed: 26360603
Zoonoses Public Health. 2017 Feb;64(1):41-52
pubmed: 27345363
Plasmid. 2007 Jan;57(1):29-43
pubmed: 16828159
Avian Dis. 2007 Dec;51(4):958-64
pubmed: 18251408
Foodborne Pathog Dis. 2006 Spring;3(1):59-67
pubmed: 16602980
Foodborne Pathog Dis. 2012 Apr;9(4):305-12
pubmed: 22356574
Foodborne Pathog Dis. 2009 May;6(4):407-15
pubmed: 19292687
J Clin Microbiol. 2013 Mar;51(3):973-8
pubmed: 23325816
Appl Environ Microbiol. 2010 Jul;76(14):4601-10
pubmed: 20472721
Clin Infect Dis. 2018 Mar 5;66(6):877-885
pubmed: 29069323
Emerg Infect Dis. 2016 Apr;22(4):617-24
pubmed: 26982594
Bioinformatics. 2014 Jul 15;30(14):2068-9
pubmed: 24642063
J Clin Microbiol. 2009 Nov;47(11):3546-56
pubmed: 19741087