Bayesian estimation of diagnostic sensitivity and specificity of a qPCR and a bacteriological culture method for Piscirickettsia salmonis in farmed Atlantic salmon (Salmo salar L.) in Chile.


Journal

Journal of fish diseases
ISSN: 1365-2761
Titre abrégé: J Fish Dis
Pays: England
ID NLM: 9881188

Informations de publication

Date de publication:
Oct 2020
Historique:
received: 04 05 2020
revised: 30 06 2020
accepted: 02 07 2020
pubmed: 28 7 2020
medline: 20 2 2021
entrez: 28 7 2020
Statut: ppublish

Résumé

Early detection of piscirickettsiosis is an important purpose of government- and industry-based surveillance for the disease in Atlantic salmon farms in Chile. Real-time qPCRs are currently used for surveillance because bacterial isolation is inadequately sensitive or rapid enough for routine use. Since no perfect tests exist, we used Bayesian latent class models to estimate diagnostic sensitivity (DSe) and specificity (DSp) of qPCR and culture using separate two-test, single-population models for three farms (n = 148, 151, 44). Informative priors were used for DSp (culture (beta(999,1); qPCR (beta(98,2)), and flat priors (beta 1,1) for DSe and prevalence. Models were run for liver and kidney tissues combined and separately, based on the presence of selected gross-pathological signs. Across all models, qPCR DSe was 5- to 30-fold greater than for culture. Combined-tissue qPCR median DSe was highest in Farm 3 (sampled during P. salmonis outbreak (DSe = 97.6%)) versus Farm 1 (DSe = 85.6%) or Farm 2 (DSe = 83.5%), both sampled before clinical disease. Median DSe of qPCR was similar for liver and kidney, but higher when gross-pathological signs were evident at necropsy. High DSe and DSp and rapid turnaround-time indicate that the qPCR is fit for surveillance programmes and diagnosis during an outbreak. Targeted testing of salmon with gross-pathological signs can enhance DSe.

Identifiants

pubmed: 32716071
doi: 10.1111/jfd.13226
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1167-1175

Subventions

Organisme : SalmonChile and Sernapesca
ID : EPIVET project 201707240090
Organisme : SalmonChile and Sernapesca
ID : Fondo Inversion Estrategica (FIE-2015-V014
Organisme : Canada Excellence Research Chair in Aquatic Epidemiology, University of Prince Edward Island

Informations de copyright

© 2020 John Wiley & Sons Ltd.

Références

American Veterinary Medical Association. (2013). AVMA Guidelines for the euthanasia of animals. Updated in 2020 after completion of the study, pdf available at https://www.avma.org/sites/default/files/2020-02/Guidelines-on-Euthanasia-2020.pdf
Assis, G. B., de Oliveira, T. F., Gardner, I. A., Figueiredo, H. C., & Leal, C. A. (2017). Sensitivity and specificity of real-time qPCR and bacteriological culture for francisellosis in farm-raised Nile tilapia (Oreochromis niloticus L.). Journal of Fish Diseases, 40, 785-795.
Birkbeck, T. H., Griffen, A. A., Reid, H. I., Laidler, L. A., & Wadsworth, S. (2004). Growth of Piscirickettsia salmonis to high titers in insect tissue culture cells. Infection and Immunity, 72, 3693-3694. https://doi.org/10.1128/IAI.72.6.3693-3694.2004
Bohle, H., Henriquez, P., Grothusen, H., Navas, E., Sandoval, A., Bustamante, F., … Mancilla, M. (2014). Comparative genome analysis of two isolates of the fish pathogen Piscirickettsia salmonis from different hosts reveals major differences in virulence-associated secretion systems. Genome Announcements, 2(6), e01219-14. https://doi.org/10.1128/genomeA.01219-14
Branscum, A. J., Gardner, I. A., & Johnson, W. O. (2005). Estimation of diagnostic-test sensitivity and specificity through Bayesian modeling. Preventive Veterinary Medicine, 68, 145-163. https://doi.org/10.1016/j.prevetmed.2004.12.005
Fryer, J. L., Lannan, C. N., Giovannoni, S. J., & Wood, N. D. (1992). Piscirickettsia salmonis gen. nov., sp. nov., the causative agent of an epizootic disease in salmonid fishes. International Journal of Systematic Bacteriology, 42, 120-126.
Gardner, I. A., Whittington, R. J., Caraguel, C., Hick, P., Moody, N., Corbeil, S., … Lagno, A. G. (2016). Recommended reporting standards for test accuracy studies of infectious diseases of finfish, amphibians, molluscs and crustaceans: The STRADAS-aquatic checklist. Diseases of Aquatic Organisms, 118, 91-111. https://doi.org/10.3354/dao02947
Gómez, F., Henríquez, V., & Marshall, S. (2009). Additional evidence of the facultative intracellular nature of the fish bacterial pathogen Piscirickettsia salmonis. Archivos Medicina Veterinaria, 41, 261-267. https://doi.org/10.4067/S0301-732X2009000300011
Jaramillo, D., Gardner, I. A., Stryhn, H., Burnley, H., & Hammell, K. L. (2017). Bayesian latent class analysis of diagnostic sensitivity and specificity of tests for surveillance for bacterial kidney disease in Atlantic salmon Salmo salar. Aquaculture, 476, 86-93. https://doi.org/10.1016/j.aquaculture.2017.03.034
Karatas, S., Mikalsen, J., Steinum, T. M., Taksal, T., Bordevik, M., & Colquhoun, D. J. (2008). Real time qPCR detection of Piscirickettsia salmonis from formalin-fixed paraffin-embedded tissues. Journal of Fish Diseases, 31, 747-753.
Kostoulas, P., Nielsen, S. S., Branscum, A. J., Johnson, W. O., Dendukuri, N., Dhand, N. K., … Gardner, I. A. (2017). STARD-BLCM: Standards for the reporting of diagnostic accuracy studies that use Bayesian latent class models. Preventive Veterinary Medicine, 138, 37-47. https://doi.org/10.1016/j.prevetmed.2017.01.006
Lannan, C., & Fryer, J. (1991). Recommended methods for inspection of fish for the salmonid rickettsia. Bulletin of the European Association of Fish Pathologists, 11, 135-136.
Laurin, E., Morrison, D., Gardner, I. A., Siah, A., Powell, J. F., & Kamaitis, M. (2019). Bayesian latent class analysis of ELISA and RT-rQPCR diagnostic accuracy for subclinical Renibacterium salmoninarum infection in Atlantic salmon (Salmo salar) broodstock. Journal of Fish Diseases, 42, 303-313.
Lunn, D., Spiegelhalter, D., Thomas, A., & Best, N. (2009). The BUGS project: Evolution, critique and future directions. Statistics in Medicine, 28, 3049-3067. https://doi.org/10.1002/sim.3680
Mainar-Jaime, R. C., Atashparvar, N., & Chirino-Trejo, M. (2008). Estimation of the diagnostic accuracy of the invA-gene-based PCR technique and bacteriological culture for the detection of Salmonella spp in caecal contents from slaughtered pigs using Bayesian analysis. Zoonoses Public Health, 55, 112-118.
Makrinos, D. L., & Bowden, T. J. (2016). Growth characteristics of the intracellular pathogen, Piscirickettsia salmonis, in tissue culture and cell-free media. Journal of Fish Diseases, 40, 1115-1127.
Mardones, F. O., Paredes, F., Medina, M., Tello, A., Valdivia, V., Ibarra, R., … Gelcich, S. (2018). Identification of research gaps for highly infectious diseases in aquaculture: The case of the endemic Piscirickettsia salmonis in the Chilean salmon farming industry. Aquaculture, 482, 211-220. https://doi.org/10.1016/j.aquaculture.2017.09.048
Mauel, M. J., Giovannoni, S. J., & Fryer, J. L. (1999). Phylogenetic analysis of Piscirickettsia salmonis by 16S, internal transcribed spacer (ITS) and 23S ribosomal DNA sequencing. Diseases of Aquatic Organisms, 35, 115-123. https://doi.org/10.3354/dao035115
Mauel, M. J., Ware, C., & Smith, P. A. (2008). Culture of Piscirickettsia salmonis on enriched blood agar. Journal of Veterinary Diagnostic Investigation, 20, 213-214.
Mikalsen, J., Skjaervik, O., Wiik-Nielsen, J., Wasmuth, M. A., & Colquhoun, D. J. (2008). Agar culture of Piscirikettsia salmonis, a serious pathogen of farmed salmonid and marine fish. Federation of European Microbiological Societies microbiology letter, 278(1), 43-47.
Rozas, M., & Enríquez, R. (2014). Piscirickettsiosis and Piscirickettsia salmonis in fish: A review. Journal of Fish Diseases, 37, 163-188.
Rozas-Serri, M., Ildefonso, R., Peña, A., Enríquez, R., Barrientos, S., & Maldonado, L. (2017). Comparative pathogenesis of piscirickettsiosis in Atlantic salmon (Salmo salar L.) post-smolt experimentally challenged with LF-89-like and EM-90-like Piscirickettsia salmonis isolates. Journal of Fish Diseases, 40, 1451-1472.
Rozas-Serri, M., Peña, A., Arriagada, G., Enríquez, R., & Maldonado, L. (2018). Comparison of gene expression in post-smolt Atlantic salmon challenged by LF-89-like and EM-90-like Piscirickettsia salmonis isolates reveals differences in the immune response associated with pathogenicity. Journal of Fish Diseases, 41, 539-552.
Rozas-Serri, M., Peña, A., & Maldonado, L. (2018). Transcriptomic profiles of post-smolt Atlantic salmon challenged with Piscirickettsia salmonis reveal a strategy to evade the adaptive immune response and modify cell-autonomous immunity. Developmental and Comparative Immunology, 81, 348-362. https://doi.org/10.1016/j.dci.2017.12.023
Sernapesca (Servicio Nacional de Pesca y Acuicultura). (2012). Res.Ex N° 3174 de 2012, Establece programa sanitario específico de vigilancia y control de Piscirickettsiosis. Available at http://www.sernapesca.cl/normativa-relacionada/res-ex-ndeg-3174-2012-programa-piscirickettsiosis-2012-12-28 (Accessed 24 April 2020).
World Organisation for Animal Health (OIE). (2019). Chapter 1.1.2. Principles and methods of validation of diagnostic assays for infectious Disease. Manual of Diagnostic Tests for Aquatic Animals, available at https://www.oie.int/index.php?id=2439&L=0&htmfile=chapitre_validation_diagnostics_assays.htm (Accessed 24 April 2020).
Yañez, A. J., Silva, H., Valenzuela, K., Pontigo, J. P., Godoy, M., Troncoso, J., … Avendaño-Herrera, R. (2013). Two novel blood-free solid media for the culture of the salmonid pathogen Piscirickettsia salmonis. Journal of Fish Diseases, 36, 587-591.
Yañez, A. J., Valenzuela, K., Silva, H., Retamales, J., Romero, A., Enriquez, R., … Carcamo, J. G. (2012). Broth medium for the successful culture of the fish pathogen Piscirickettsia salmonis. Diseases of Aquatic Organisms, 97, 197-205. https://doi.org/10.3354/dao02403

Auteurs

Emilie Laurin (E)

Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.

Ian A Gardner (IA)

Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada.

Andrea Peña (A)

Pathovet Laboratory Ltd, Puerto Montt, Chile.

Marco Rozas-Serri (M)

Pathovet Laboratory Ltd, Puerto Montt, Chile.

Jorge Gayosa (J)

Pathovet Laboratory Ltd, Puerto Montt, Chile.

Joaquin Neumann Heise (J)

School of Veterinary Medicine, Pontifical Catholic University, Santiago, Chile.

Fernando O Mardones (FO)

School of Veterinary Medicine, Pontifical Catholic University, Santiago, Chile.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH