Quantitative Determination of Glymphatic Flow Using Spectrophotofluorometry.


Journal

Neuroscience bulletin
ISSN: 1995-8218
Titre abrégé: Neurosci Bull
Pays: Singapore
ID NLM: 101256850

Informations de publication

Date de publication:
Dec 2020
Historique:
received: 14 02 2020
accepted: 06 05 2020
pubmed: 28 7 2020
medline: 29 7 2021
entrez: 26 7 2020
Statut: ppublish

Résumé

Following intrathecal injection of fluorescent tracers, ex vivo imaging of brain vibratome slices has been widely used to study the glymphatic system in the rodent brain. Tracer penetration into the brain is usually quantified by image-processing, even though this approach requires much time and manual operation. Here, we illustrate a simple protocol for the quantitative determination of glymphatic activity using spectrophotofluorometry. At specific time-points following intracisternal or intrastriatal injection of fluorescent tracers, certain brain regions and the spinal cord were harvested and tracers were extracted from the tissue. The intensity of tracers was analyzed spectrophotometrically and their concentrations were quantified from standard curves. Using this approach, the regional and dynamic delivery of subarachnoid CSF tracers into the brain parenchyma was assessed, and the clearance of tracers from the brain was also determined. Furthermore, the impairment of glymphatic influx in the brains of old mice was confirmed using our approach. Our method is more accurate and efficient than the imaging approach in terms of the quantitative determination of glymphatic activity, and this will be useful in preclinical studies.

Identifiants

pubmed: 32710307
doi: 10.1007/s12264-020-00548-w
pii: 10.1007/s12264-020-00548-w
pmc: PMC7719142
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1524-1537

Références

Neurosci Bull. 2018 Jun;34(3):438-448
pubmed: 29247318
J Neurosci. 2014 Dec 3;34(49):16180-93
pubmed: 25471560
Lancet Neurol. 2018 Nov;17(11):1016-1024
pubmed: 30353860
Life Sci. 2017 Aug 1;182:29-40
pubmed: 28576642
Science. 2013 Oct 18;342(6156):373-7
pubmed: 24136970
JCI Insight. 2018 Oct 18;3(20):
pubmed: 30333324
Nat Commun. 2015 Apr 23;6:6807
pubmed: 25904018
J Nucl Med. 2017 Sep;58(9):1471-1476
pubmed: 28302766
Neurobiol Dis. 2016 Sep;93:215-25
pubmed: 27234656
J Physiol. 2018 Feb 1;596(3):445-475
pubmed: 29023798
Sci Rep. 2017 Sep 7;7(1):10888
pubmed: 28883476
Neurosci Bull. 2020 Jan;36(1):25-38
pubmed: 31376056
Neurochem Res. 2015 Dec;40(12):2583-99
pubmed: 25947369
Neurosci Bull. 2018 Oct;34(5):827-832
pubmed: 29651705
J Transl Med. 2013 May 01;11:107
pubmed: 23635358
Psychopharmacology (Berl). 2019 Apr;236(4):1367-1384
pubmed: 30607477
Cell Rep. 2019 Mar 12;26(11):2955-2969.e3
pubmed: 30865886
Elife. 2017 Aug 21;6:
pubmed: 28826498
Sci Rep. 2013;3:2582
pubmed: 24002448
Neuroscientist. 2017 Oct;23(5):454-465
pubmed: 28466758
Life Sci. 2018 May 15;201:150-160
pubmed: 29605446
Sci Transl Med. 2012 Aug 15;4(147):147ra111
pubmed: 22896675
Elife. 2018 Dec 18;7:
pubmed: 30561329
J Neurosci. 2015 Aug 5;35(31):11034-44
pubmed: 26245965
Neurosci Lett. 2018 Jan 1;662:253-258
pubmed: 29079431
Neuron. 2004 Aug 5;43(3):333-44
pubmed: 15294142
J Neurosci Methods. 1983 May;8(1):41-9
pubmed: 6876872
Sci Rep. 2018 Feb 2;8(1):2246
pubmed: 29396480
Nat Commun. 2018 Nov 19;9(1):4878
pubmed: 30451853
Psychopharmacology (Berl). 2017 Feb;234(3):365-379
pubmed: 27837334
J Clin Invest. 2013 Mar;123(3):1299-309
pubmed: 23434588
Sci Adv. 2019 Feb 27;5(2):eaav5447
pubmed: 30820460
Stroke. 2014 Oct;45(10):3092-6
pubmed: 25190438
Cancer Sci. 2019 Nov;110(11):3510-3519
pubmed: 31487418
Mol Neurodegener. 2016 Dec 8;11(1):74
pubmed: 27931262
J Cereb Blood Flow Metab. 2017 Jun;37(6):2112-2124
pubmed: 27481936
Brain. 2017 Oct 1;140(10):2691-2705
pubmed: 28969373
J Neurosci Methods. 2019 Jan 1;311:436-441
pubmed: 30292824
J Neurosci. 2019 Aug 7;39(32):6365-6377
pubmed: 31209176
Ann Neurol. 2014 Dec;76(6):845-61
pubmed: 25204284
J Neurosci. 2017 Mar 15;37(11):2904-2915
pubmed: 28193695

Auteurs

Yu Zhang (Y)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China.

Jian Song (J)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China.

Xu-Zhong He (XZ)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China.

Jian Xiong (J)

Institute of Medical Biotechnology, Suzhou Vocational Health College, Suzhou, 215009, China.

Rong Xue (R)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China.

Jia-Hao Ge (JH)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China.

Shi-Yu Lu (SY)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China.

Die Hu (D)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China.

Guo-Xing Zhang (GX)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China.

Guang-Yin Xu (GY)

Institute of Neuroscience, Soochow University, Suzhou, 215123, China. guangyinxu@suda.edu.cn.

Lin-Hui Wang (LH)

Department of Physiology and Neurobiology, Medical College of Soochow University, Suzhou, 215123, China. wanglinhui@suda.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH