Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
24 07 2020
24 07 2020
Historique:
received:
14
03
2018
accepted:
03
07
2020
entrez:
26
7
2020
pubmed:
28
7
2020
medline:
28
7
2020
Statut:
epublish
Résumé
Groundwater provides critical freshwater supply, particularly in dry regions where surface water availability is limited. Climate change impacts on GWS (groundwater storage) could affect the sustainability of freshwater resources. Here, we used a fully-coupled climate model to investigate GWS changes over seven critical aquifers identified as significantly distressed by satellite observations. We assessed the potential climate-driven impacts on GWS changes throughout the 21
Identifiants
pubmed: 32709871
doi: 10.1038/s41467-020-17581-y
pii: 10.1038/s41467-020-17581-y
pmc: PMC7382464
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
3710Références
Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).
Famiglietti, J. S. The global groundwater crisis. Nat. Clim. Change 4, 945–948 (2014).
Wu, W. Y., Lan, C. W., Lo, M. H., Reager, J. T. & Famiglietti, J. S. Increases in the annual range of soil water storage at northern middle and high latitudes under global warming. Geophys. Res. Lett. 42, 3903–3910 (2015).
Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 3, 52–58 (2012).
Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Change 4, 17–22 (2013).
Marvel, K. et al. Twentieth-century hydroclimate changes consistent with human influence. Nature 569, 59–65 (2019).
pubmed: 31043729
Cuthbert, M. O. et al. Observed controls on resilience of groundwater to climate variability in sub-Saharan Africa. Nature 572, 230–234 (2019).
pubmed: 31391559
Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 869–874 (2016).
Lo, M.-H. & Famiglietti, J. S. Irrigation in California’s Central Valley strengthens the southwestern U.S. water cycle. Geophys. Res. Lett. 40, 301–306 (2013).
Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).
pubmed: 23430651
IPCC Climate Change 2007: The Physical Science Basis (eds. Solomon, S. et al.) (Cambridge University Press for the Intergovernmental Panel on Climate Change, 2007).
Allen, D. M., Cannon, A. J., Toews, M. W. & Scibek, J. Variability in simulated recharge using different GCMs. Water Resour. Res. 46, W00F03 (2010).
Crosbie, R. S. et al. Potential climate change effects on groundwater recharge in the High Plains Aquifer, USA. Water Resour. Res. 49, 3936–3951 (2013).
Portmann, F., Petra, D., Stephanie, E. & Martina, F. Impact of climate change on renewable groundwater resources: assessing the benefits of avoided greenhouse gas emissions using selected CMIP5 climate projections. Environ. Res. Lett. 8, 024023 (2013).
Habets, F. et al. Impact of climate change on the hydrogeology of two basins in northern France. Climatic Change 121, 771–785 (2013).
Haddeland, I. et al. Global water resources affected by human interventions and climate change. Proc. Natl. Acad. Sci. USA 111, 3251–3256 (2014).
pubmed: 24344275
McCallum, J. L., Crosbie, R. S., Walker, G. R. & Dawes, W. R. Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge. Hydrogeol. J. 18, 1625–1638 (2010).
Prudhomme, C. et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proc. Natl. Acad. Sci. USA 111, 3262–3267 (2014).
pubmed: 24344266
Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. Acad. Sci. USA 111, 3245–3250 (2014).
pubmed: 24344289
Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).
Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Water Resour. Res. 48, W00L06 (2012).
Lehner, F. et al. Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst. Dynam. 11, 491–508 (2020).
Lo, M.-H. & Famiglietti, J. S. Precipitation response to land subsurface hydrologic processes in atmospheric general circulation model simulations. J. Geophys. Res.: Atmospheres 116, D5107 (2011).
Maxwell, R. M. & Kollet, S. J. Interdependence of groundwater dynamics and land-energy feedbacks under climate change. Nat. Geosci. 1, 665–669 (2008).
Kay, J. E. et al. The Community Earth System Model (CESM) Large Ensemble Project: a community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 96, 1333–1349 (2015).
Lawrence, D. M. et al. Parameterization improvements and functional and structural advances in Version 4 of the Community Land Model. J. Adv. Modeling Earth Syst. 3, M03001 (2011).
Toure, A. M. et al. Evaluation of the snow simulations from the Community Land Model, version 4 (CLM4). J. Hydrometeorol. 17, 153–170 (2016).
Zeng, Z. et al. Impact of Earth greening on the terrestrial water cycle. J. Clim. 31, 2633–2650 (2018).
Fyfe, J. C. et al. Large near-term projected snowpack loss over the western United States. Nat. Commun. 8, 14996 (2017).
pubmed: 28418406
pmcid: 5399290
Mudryk, L., Kushner, P., Derksen, C. & Thackeray, C. Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett. 44, 919–926 (2017).
Cheng, S., Huang, J., Ji, F. & Lin, L. Uncertainties of soil moisture in historical simulations and future projections. J. Geophys. Res.: Atmospheres 122, 2239–2253 (2017).
Mankin, J. S., Viviroli, D., Singh, D., Hoekstra, A. Y. & Diffenbaugh, N. S. The potential for snow to supply human water demand in the present and future. Environ. Res. Lett. 10, 114016 (2015).
Ferguson, C. R., Pan, M. & Oki, T. The effect of global warming on future water availability: CMIP5 synthesis. Water Resour. Res. 54, 7791–7819 (2018).
Niu, G. Y., Yang, Z. L., Dickinson, R. E., Gulden, L. E. & Su, H. Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J. Geophys. Res.: Atmospheres 112, D07103 (2007).
Oleson, K. et al. Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res.: Biogeosci. 113, G01021 (2008).
Oleson, K. et al. Technical Description of Version 4.0 of the Community Land Model (CLM). No. NCAR/TN-478+STR) (University Corporation for Atmospheric Research, 2010).
Gulden, L. E. et al. Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile?. Geophys. Res. Lett. 34, L09402 (2007).
Cai, X. et al. Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS test bed. J. Geophys. Res.: Atmospheres 119, 751–13,770 (2014).
Lin, Y.-H., Lo, M.-H. & Chou, C. Potential negative effects of groundwater dynamics on dry season convection in the Amazon River basin. Clim. Dyn. 46, 1001–1013 (2016).
Wada, Y. et al. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Change 6, 777–780 (2016).
Famiglietti, J. S. et al. Satellites measure recent rates of groundwater depletion in California’s Central Valley. Geophys. Res. Lett. 38, L03403 (2011).
Feng, W. et al. Evaluation of groundwater depletion in North China using the Gravity Recovery and Climate Experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49, 2110–2118 (2013).
Richey, A. S. et al. Quantifying renewable groundwater stress with GRACE. Water Resour. Res. 51, 5217–5238 (2015).
pubmed: 26900185
pmcid: 4744761
Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).
pubmed: 19675570
Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 109, 9320–9325 (2012).
pubmed: 22645352
Voss, K. A. et al. Groundwater depletion in the Middle East from GRACE with implications for transboundary water management in the Tigris-Euphrates-Western Iran region. Water Resour. Res. 49, 904–914 (2013).
pubmed: 23658469
pmcid: 3644870
Rodell, M. et al. Emerging trends in global freshwater availability. Nature 557, 651–659 (2018).
pubmed: 29769728
pmcid: 6077847
Yeh, P. J.-F. & Famiglietti, J. S. Regional groundwater evapotranspiration in Illinois. J. Hydrometeorol. 10, 464–478 (2009).
Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, e1400082 (2015).
pubmed: 26601131
pmcid: 4644081
Steward, D. R. et al. Tapping unsustainable groundwater stores for agricultural production in the High Plains Aquifer of Kansas, projections to 2110. Proc. Natl. Acad. Sci. USA 110, E3477–E3486 (2013).
pubmed: 23980153
Meixner, T. et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 534, 124–138 (2016).
Wada, Y. et al. Modeling global water use for the 21st century: Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 9, 175–222 (2016).
Yoon, J.-H., Wang, S. S., Lo, M.-H. & Wu, W.-Y. Concurrent increases in wet and dry extremes projected in Texas and combined effects on groundwater. Environ. Res. Lett. 13, 054002 (2018).
Barnett, T. P., Adam, J. C. & Lettenmaier, D. P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438, 303–309 (2005).
pubmed: 16292301
Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M. & Peterson, D. H. Changes in the onset of spring in the Western United States. Bull. Am. Meteorol. Soc. 82, 399–416 (2001).
Earman, S., Campbell, A. R., Phillips, F. M. & Newman, B. D. Isotopic exchange between snow and atmospheric water vapor: Estimation of the snowmelt component of groundwater recharge in the southwestern United States. J. Geophys. Res.: Atmospheres 111, D006470 (2006).
Immerzeel, W. W., van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the Asian Water Towers. Science 328, 1382–1385 (2010).
pubmed: 20538947
Rhoades, A. M., Ullrich, P. A. & Zarzycki, C. M. Projecting 21st century snowpack trends in western USA mountains using variable-resolution CESM. Clim. Dyn. 50, 261–288 (2018).
Maxwell, R. M. et al. Surface‐subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks. Water Resour. Res. 50, 1531–1549 (2014).
Fan, Y., Miguez‐Macho, G., Weaver, C. P., Walko, R. & Robock, A. Incorporating water table dynamics in climate modeling: 1. Water table observations and equilibrium water table simulations. J. Geophys. Res.: Atmospheres 112, D10125 (2007).
Hirmas, D. R. et al. Climate-induced changes in continental-scale soil macroporosity may intensify water cycle. Nature 561, 100–103 (2018).
pubmed: 30185954
Koven, C. D., Riley, W. J. & Stern, A. Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System models. J. Clim. 26, 1877–1900 (2013).
Taylor, R. G. et al. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nature. Clim. Change 3, 374–378 (2013).
Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).
Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703 (2014).
Simpson, I. R., Seager, R., Ting, M. & Shaw, T. A. Causes of change in Northern Hemisphere winter meridional winds and regional hydroclimate. Nat. Clim. Change 6, 65–70 (2016).
Niu, G. Y., Yang, Z. L., Dickinson, R. E. & Gulden, L. E. A simple TOPMODEL‐based runoff parameterization (SIMTOP) for use in global climate models. J. Geophys. Res.: Atmospheres 110, D21106 (2005).
Feng, Q., Ma, H., Jiang, X., Wang, X. & Cao, S. What has caused desertification in China? Sci. Rep. 5, 15998 (2015).
pubmed: 26525278
pmcid: 4630590
Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).
pubmed: 12791990
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res.: Solid Earth 120, 2648–2671 (2015).