Comparative assessment of mouse models for experimental orthodontic tooth movement.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 07 2020
22 07 2020
Historique:
received:
15
04
2020
accepted:
15
06
2020
entrez:
24
7
2020
pubmed:
24
7
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Animal experiments are essential for the elucidation of biological-cellular mechanisms in the context of orthodontic tooth movement (OTM). So far, however, no studies comparatively assess available mouse models regarding their suitability. OTM of first upper molars was induced in C57BL/6 mice either via an elastic band or a NiTi coil spring for three, seven or 12 days. We assessed appliance survival rate, OTM and periodontal bone loss (µCT), root resorptions, osteoclastogenesis (TRAP
Identifiants
pubmed: 32699355
doi: 10.1038/s41598-020-69030-x
pii: 10.1038/s41598-020-69030-x
pmc: PMC7376195
doi:
Substances chimiques
Cathepsin K
EC 3.4.22.38
Ctsk protein, mouse
EC 3.4.22.38
Types de publication
Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
12154Références
Meikle, M. C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur. J. Orthod. 28, 221–240 (2006).
doi: 10.1093/ejo/cjl001
Klein, Y. et al. Immunorthodontics: in vivo gene expression of orthodontic tooth movement. Sci. Rep. 10, 8172. https://doi.org/10.1038/s41598-020-65089-8 (2020).
doi: 10.1038/s41598-020-65089-8
pubmed: 32424121
pmcid: 7235241
Wolf, M. et al. CD8+ T cells mediate the regenerative PTH effect in hPDL cells via Wnt10b signaling. Innate Immun. 22, 674–681 (2016).
doi: 10.1177/1753425916669417
Tsukasaki, M. & Takayanagi, H. Osteoimmunology: evolving concepts in bone-immune interactions in health and disease. Nat. Rev. Immunol. 19, 626–642. https://doi.org/10.1038/s41577-019-0178-8 (2019).
doi: 10.1038/s41577-019-0178-8
pubmed: 31186549
Rubin, J., Rubin, C. & Jacobs, C. R. Molecular pathways mediating mechanical signaling in bone. Gene 367, 1–16. https://doi.org/10.1016/j.gene.2005.10.028 (2006).
doi: 10.1016/j.gene.2005.10.028
pubmed: 16361069
Wolf, M. et al. Short-term heat pre-treatment modulates the release of HMGB1 and pro-inflammatory cytokines in hPDL cells following mechanical loading and affects monocyte behavior. Clin. Oral Investig. 20, 923–931 (2016).
doi: 10.1007/s00784-015-1580-7
Li, Y., Jacox, L. A., Little, S. H. & Ko, C.-C. Orthodontic tooth movement: The biology and clinical implications. Kaohsiung J. Med. Sci. 34, 207–214 (2018).
doi: 10.1016/j.kjms.2018.01.007
Yamaguchi, M. RANK/RANKL/OPG during orthodontic tooth movement. Orthod. Craniofac. Res. 12, 113–119 (2009).
doi: 10.1111/j.1601-6343.2009.01444.x
Grant, M., Wilson, J., Rock, P. & Chapple, I. Induction of cytokines, MMP9, TIMPs, RANKL and OPG during orthodontic tooth movement. Eur. J. Orthod. 35, 644–651 (2013).
doi: 10.1093/ejo/cjs057
Plut, A. et al. Bone remodeling during orthodontic tooth movement in rats with type 2 diabetes. Am. J. Orthod. Dentofacial Orthop. 148, 1017–1025 (2015).
doi: 10.1016/j.ajodo.2015.05.031
Kawai, T. et al. B and T lymphocytes are the primary sources of RANKL in the bone resorptive lesion of periodontal disease. Am. J. Pathol. 169, 987–998 (2006).
doi: 10.2353/ajpath.2006.060180
Takano-Yamamoto, T. et al. Synergistic acceleration of experimental tooth movement by supplementary high-frequency vibration applied with a static force in rats. Sci. Rep. 7, 13969. https://doi.org/10.1038/s41598-017-13541-7 (2017).
doi: 10.1038/s41598-017-13541-7
pubmed: 29070874
pmcid: 5656656
Waldo, C. M. & Rothblatt, J. M. Histologic response to tooth movement in the laboratory rat; procedure and preliminary observations. J. Dent. Res. 33, 481–486 (1954).
doi: 10.1177/00220345540330040701
Kanzaki, H., Shinohara, F., Itohiya-Kasuya, K., Ishikawa, M. & Nakamura, Y. Nrf2 activation attenuates both orthodontic tooth movement and relapse. J. Dent. Res. 94, 787–794 (2015).
doi: 10.1177/0022034515577814
Fujimura, Y. et al. Influence of bisphosphonates on orthodontic tooth movement in mice. Eur. J. Orthod. 31, 572–577 (2009).
doi: 10.1093/ejo/cjp068
Kirschneck, C. et al. Differentiated analysis of orthodontic tooth movement in rats with an improved rat model and three-dimensional imaging. Ann. Anat. 195, 539–553 (2013).
doi: 10.1016/j.aanat.2013.08.003
Hakami, Z. et al. Effect of interleukin-4 on orthodontic tooth movement and associated root resorption. Eur. J. Orthod. 37, 87–94 (2015).
doi: 10.1093/ejo/cju016
Yoshimatsu, M. et al. Inhibitory effects of IL-12 on experimental tooth movement and root resorption in mice. Arch. Oral Biol. 57, 36–43 (2012).
doi: 10.1016/j.archoralbio.2011.07.006
Pal, A. et al. Micro-anatomical responses in periodontal complexes of mice to calibrated orthodontic forces on the crown. Orthod. Craniofac. Res. 20(Suppl 1), 100–105. https://doi.org/10.1111/ocr.12172 (2017).
doi: 10.1111/ocr.12172
pubmed: 28643923
Kondo, M., Kondo, H., Miyazawa, K., Goto, S. & Togari, A. Experimental tooth movement-induced osteoclast activation is regulated by sympathetic signaling. Bone 52, 39–47 (2013).
doi: 10.1016/j.bone.2012.09.007
Yabumoto, T. et al. Stabilization of tooth movement by administration of reveromycin A to osteoprotegerin-deficient knockout mice. Am. J. Orthod. Dentofacial Orthop. 144, 368–380 (2013).
doi: 10.1016/j.ajodo.2013.04.016
Meeran, N. A. Iatrogenic possibilities of orthodontic treatment and modalities of prevention. J. Orthod. Sci. 2, 73–86 (2013).
doi: 10.4103/2278-0203.119678
Ozaki, H. et al. Biomechanical aspects of segmented arch mechanics combined with power arm for controlled anterior tooth movement: A three-dimensional finite element study. J. Dent. Biomech. 6, 1758736014566337. https://doi.org/10.1177/1758736014566337 (2015).
doi: 10.1177/1758736014566337
pubmed: 25610497
pmcid: 4299366
Gomes, S. C., Varela, C. C., da Veiga, S. L., Rösing, C. K. & Oppermann, R. V. Periodontal conditions in subjects following orthodontic therapy. A preliminary study. Eur. J. Orthod. 29, 477–481 (2007).
doi: 10.1093/ejo/cjm050
Bollen, A.-M., Cunha-Cruz, J., Bakko, D. W., Huang, G. J. & Hujoel, P. P. The effects of orthodontic therapy on periodontal health: a systematic review of controlled evidence. J Am Dent Assoc 139, 413–422. https://doi.org/10.14219/jada.archive.2008.0184 (2008).
doi: 10.14219/jada.archive.2008.0184
pubmed: 18385025
Bondemark, L. Interdental bone changes after orthodontic treatment: A 5-year longitudinal study. Am. J. Orthod. Dentofacial Orthop. 114, 25–31 (1998).
doi: 10.1016/S0889-5406(98)70233-1
Motokawa, M. et al. Association between root resorption incident to orthodontic treatment and treatment factors. Eur. J. Orthod. 34, 350–356. https://doi.org/10.1093/ejo/cjr018 (2012).
doi: 10.1093/ejo/cjr018
pubmed: 21811005
Dindaroğlu, F. & Doğan, S. Root resorption in orthodontics. Turk. J. Orthod. 29, 103–108 (2016).
doi: 10.5152/TurkJOrthod.2016.16021
Richardson, C. C. Annual Review of Biochemistry (Annual Reviews, Palo Alto, Calif., 2000).
Ricciotti, E. & FitzGerald, G. A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 31, 986–1000. https://doi.org/10.1161/ATVBAHA.110.207449 (2011).
doi: 10.1161/ATVBAHA.110.207449
pubmed: 21508345
pmcid: 3081099
Dubois, R. N. et al. Cyclooxygenase in biology and disease. FASEB J. 12, 1063–1073 (1998).
doi: 10.1096/fasebj.12.12.1063
Krishnan, V. & Davidovitch, Z. Cellular, molecular, and tissue-level reactions to orthodontic force. Am J Orthod. Dentofacial Orthop. 129, 469e1-32 (2006).
doi: 10.1016/j.ajodo.2005.10.007
Dudic, A., Kiliaridis, S., Mombelli, A. & Giannopoulou, C. Composition changes in gingival crevicular fluid during orthodontic tooth movement: comparisons between tension and compression sides. Eur. J. Oral Sci. 114, 416–422. https://doi.org/10.1111/j.1600-0722.2006.00387.x (2006).
doi: 10.1111/j.1600-0722.2006.00387.x
pubmed: 17026508
Grieve, W. G., Johnson, G. K., Moore, R. N., Reinhardt, R. A. & DuBois, L. M. Prostaglandin E (PGE) and interleukin-1 beta (IL-1 beta) levels in gingival crevicular fluid during human orthodontic tooth movement. Am. J. Orthod. Dentofacial Orthop. 105, 369–374. https://doi.org/10.1016/s0889-5406(94)70131-8 (1994).
doi: 10.1016/s0889-5406(94)70131-8
pubmed: 8154462
Dunn, M. D., Park, C. H., Kostenuik, P. J., Kapila, S. & Giannobile, W. V. Local delivery of osteoprotegerin inhibits mechanically mediated bone modeling in orthodontic tooth movement. Bone 41, 446–455 (2007).
doi: 10.1016/j.bone.2007.04.194
Leung, K. S., Fung, K. P., Sher, A. H., Li, C. K. & Lee, K. M. Plasma bone-specific alkaline phosphatase as an indicator of osteoblastic activity. J. Bone Joint Surg. Br. 75, 288–292 (1993).
doi: 10.1302/0301-620X.75B2.8444951
Dodds, R. A., Connor, J. R., Drake, F., Feild, J. & Gowen, M. Cathepsin K mRNA detection is restricted to osteoclasts during fetal mouse development. J. Bone Miner. Res. 13, 673–682 (1998).
doi: 10.1359/jbmr.1998.13.4.673
Tezuka, K. et al. Molecular cloning of a possible cysteine proteinase predominantly expressed in osteoclasts. J. Biol. Chem. 269, 1106–1109 (1994).
pubmed: 8288568
Dodds, R. A. et al. Human osteoclast cathepsin K is processed intracellularly prior to attachment and bone resorption. J. Bone Miner. Res. 16, 478–486 (2001).
doi: 10.1359/jbmr.2001.16.3.478
Ohba, Y., Ohba, T., Terai, K. & Moriyama, K. Expression of cathepsin K mRNA during experimental tooth movement in rat as revealed by in situ hybridization. Arch. Oral Biol. 45, 63–69. https://doi.org/10.1016/s0003-9969(99)00104-1 (2000).
doi: 10.1016/s0003-9969(99)00104-1
pubmed: 10669093
Kirschneck, C. et al. Reference genes for valid gene expression studies on rat dental, periodontal and alveolar bone tissue by means of RT-qPCR with a focus on orthodontic tooth movement and periodontitis. Ann. Anat. 204, 93–105 (2016).
doi: 10.1016/j.aanat.2015.11.005
Taddei, S. R. A. et al. Experimental model of tooth movement in mice: A standardized protocol for studying bone remodeling under compression and tensile strains. J Biomech 45, 2729–2735. https://doi.org/10.1016/j.jbiomech.2012.09.006 (2012).
doi: 10.1016/j.jbiomech.2012.09.006
pubmed: 23036306
Koretsi, V., Kirschneck, C., Proff, P. & Römer, P. Expression of glutathione peroxidase 1 in the spheno-occipital synchondrosis and its role in ROS-induced apoptosis. Eur. J. Orthod. 37, 308–313 (2015).
doi: 10.1093/ejo/cju045
Kirschneck, C., Maurer, M., Wolf, M., Reicheneder, C. & Proff, P. Regular nicotine intake increased tooth movement velocity, osteoclastogenesis and orthodontically induced dental root resorptions in a rat model. Int. J. Oral Sci. 9, 174–184 (2017).
doi: 10.1038/ijos.2017.34
Schröder, A. et al. Effects of ethanol on human periodontal ligament fibroblasts subjected to static compressive force. Alcohol 77, 59–70 (2019).
doi: 10.1016/j.alcohol.2018.10.004