Current status of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus isolated from patients with skin and soft tissue infections in Japan.
Anti-Bacterial Agents
/ therapeutic use
Bacterial Toxins
Community-Acquired Infections
/ drug therapy
Exotoxins
/ genetics
Humans
Japan
/ epidemiology
Leukocidins
/ genetics
Methicillin-Resistant Staphylococcus aureus
/ genetics
Soft Tissue Infections
/ drug therapy
Staphylococcal Infections
/ drug therapy
Staphylococcus aureus
Panton-Valentine leukocidin
USA300 clone
antimicrobial susceptibility
community-acquired methicillin-resistant Staphylococcus aureus
skin and soft tissue infection
Journal
The Journal of dermatology
ISSN: 1346-8138
Titre abrégé: J Dermatol
Pays: England
ID NLM: 7600545
Informations de publication
Date de publication:
Nov 2020
Nov 2020
Historique:
received:
01
06
2020
accepted:
17
06
2020
pubmed:
23
7
2020
medline:
15
5
2021
entrez:
23
7
2020
Statut:
ppublish
Résumé
The USA300 clone, which produces Panton-Valentine leukocidin (PVL), is a major pathogenic community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) clone that causes intractable skin infections. Recently, PVL-positive CA-MRSA, including USA300 clones, have emerged in both communities and hospitals in Japan. To prevent an outbreak of PVL-positive MRSA, infected patients should be treated with effective antimicrobial agents at community clinics. Herein, we investigate molecular epidemiological characteristics of PVL-positive MRSA isolated from outpatients with skin and soft tissue infections (SSTI), which are common community-onset infectious diseases. The detection rate of MRSA was 24.9% (362 strains) out of 1455 S. aureus strains isolated between 2013 and 2017. Among the MRSA strains, 15.5% (56 strains) were PVL-positive strains and associated with deep-seated skin infections. Molecular epidemiological analyses of PVL-positive MRSA showed that USA300 was the predominant clone (53.6%, 30 strains) and was identified in Kanto (18 strains), Kagawa (nine strains), Tohoku (two strains) and Hokkaido (one strain). Notably, minocycline and fusidic acid were effective against all PVL-positive MRSA strains. Hence, our data reveals the current status of PVL-positive MRSA isolated from patients with SSTI in Japan. Continuous surveillance of CA-MRSA is necessary to monitor latest prevalence rates and identify effective antimicrobial agents for PVL-positive MRSA strains.
Identifiants
pubmed: 32696497
doi: 10.1111/1346-8138.15506
doi:
Substances chimiques
Anti-Bacterial Agents
0
Bacterial Toxins
0
Exotoxins
0
Leukocidins
0
Panton-Valentine leukocidin
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1280-1286Subventions
Organisme : Japan Society for the Promotion of Science KAKENHI
ID : JP18K06797
Informations de copyright
© 2020 Japanese Dermatological Association.
Références
Bukowski M, Wladyka B, Dubin G. Exfoliative toxins of Staphylococcus aureus. Toxins (Basel) 2010; 2: 1148-1165.
Sabat AJ, Koksal M, Akkerboom V et al. Detection of new methicillin-resistant Staphylococcus aureus strains that carry a novel genetic homologue and important virulence determinants. J Clin Microbiol 2012; 50: 3374-3377.
Harada D, Nakaminami H, Miyajima E et al. Change in genotype of methicillin-resistant Staphylococcus aureus (MRSA) affects the antibiogram of hospital-acquired MRSA. J Infect Chemother 2018; 24: 563-569.
Kaya H, Hasman H, Larsen J et al. SCCmecFinder, a web-based tool for typing of staphylococcal cassette chromosome mec in Staphylococcus aureus using whole-genome sequence data. mSphere 2018; 3: e00612-17.
Nakaminami H, Noguchi N, Ikeda M et al. Molecular epidemiology and antimicrobial susceptibilities of 273 exfoliative toxin-encoding-gene-positive Staphylococcus aureus isolates from patients with impetigo in Japan. J Med Microbiol 2008; 57: 1251-1258.
Nakaminami H, Noguchi N, Ito A et al. Characterization of methicillin-resistant Staphylococcus aureus isolated from tertiary care hospitals in Tokyo, Japan. J Infect Chemother 2014; 20: 512-515.
Ito A, Nakaminami H, Fujii T, Utsumi K, Noguchi N. Increase in SCCmec type IV strains affects trends in antibiograms of meticillin-resistant Staphylococcus aureus at a tertiary-care hospital. J Med Microbiol 2015; 64: 745-751.
Takadama S, Nakaminami H, Sato A et al. Dissemination of Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus USA300 clone in multiple hospitals in Tokyo, Japan. Clin Microbiol Infect 2018; 24: 1211.e1-1211.e7.
Nakaminami H, Takadama S, Ito A et al. Characterization of SCCmec type IV methicillin-resistant Staphylococcus aureus clones increased in Japanese hospitals. J Med Microbiol 2018; 67: 769-774.
Zetola N, Francis JS, Nuermberger EL, Bishai WR. Community-acquired meticillin-resistant Staphylococcus aureus: an emerging threat. Lancet Infect Dis 2005; 5: 275-286.
Dinges MM, Orwin PM, Schlievert PM. Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 2000; 13: 16-34, table of contents.
Diep BA, Otto M. The role of virulence determinants in community-associated MRSA pathogenesis. Trends Microbiol 2008; 16: 361-369.
Yamasaki O, Kaneko J, Morizane S et al. The association between Staphylococcus aureus strains carrying panton-valentine leukocidin genes and the development of deep-seated follicular infection. Clin Infect Dis 2005; 40: 381-385.
Fey PD, Said-Salim B, Rupp ME et al. Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47: 196-203.
Tenover FC, Goering RV. Methicillin-resistant Staphylococcus aureus strain USA300: origin and epidemiology. J Antimicrob Chemother 2009; 64: 441-446.
Nimmo GR. USA300 abroad: global spread of a virulent strain of community-associated methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 2012; 18: 725-734.
Vandenesch F, Naimi T, Enright MC et al. Community-acquired methicillin-resistant Staphylococcus aureus carrying Panton-Valentine leukocidin genes: worldwide emergence. Emerg Infect Dis 2003; 9: 978-984.
Blanco R, Tristan A, Ezpeleta G et al. Molecular epidemiology of Panton-Valentine leukocidin-positive Staphylococcus aureus in Spain: emergence of the USA300 clone in an autochthonous population. J Clin Microbiol 2011; 49: 433-436.
Kikuta H, Shibata M, Nakata S et al. Predominant dissemination of PVL-negative CC89 MRSA with SCCmec type II in children with Impetigo in Japan. Int J Pediatr 2011; 2011: 143872.
Iwao Y, Ishii R, Tomita Y et al. The emerging ST8 methicillin-resistant Staphylococcus aureus clone in the community in Japan: associated infections, genetic diversity, and comparative genomics. J Infect Chemother 2012; 18: 228-240.
Takadama S, Nakaminami H, Aoki S et al. Prevalence of skin infections caused by Panton-Valentine leukocidin-positive methicillin-resistant Staphylococcus aureus in Japan, particularly in Ishigaki, Okinawa. J Infect Chemother 2017; 23: 800-803.
Nakaminami H, Sugiyama T, Okamura Y et al. Comparative analysis of methicillin-resistant Staphylococcus aureus isolated from outpatients of dermatology unit in hospitals and clinics. J Infect Chemother 2019; 25: 233-237.
Sasai N, Nakaminami H, Iwasaki M et al. Clonal change of methicillin-resistant Staphylococcus aureus isolated from patients with impetigo in Kagawa, Japan. J Dermatol 2019; 46: 301-307.
Nakaminami H, Ito A, Sakanashi D et al. Genetic diversity of pvl-positive community-onset methicillin-resistant Staphylococcus aureus isolated at a university hospital in Japan. J Infect Chemother 2017; 23: 856-858.
Kuroda M, Ohta T, Uchiyama I et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 2001; 357: 1225-1240.
Watanabe S, Ito T, Sasaki T et al. Genetic diversity of staphylocoagulase genes (coa): insight into the evolution of variable chromosomal virulence factors in Staphylococcus aureus. PLoS One 2009; 4: e5714.
Kondo Y, Ito T, Ma XX et al. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother 2007; 51: 264-274.
CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard M07-A10. Wayne, PA: Clinical and Laboratory Standards Institute, 2015.
CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Approved Standard M100-S26. Wayne, PA: Clinical and Laboratory Standards Institute, 2016.
Nakaminami H, Ito T, Han X etal. First report of sasX-positive methicillin-resistant Staphylococcus aureus in Japan. FEMS Microbiol Lett 2017; 364: fnx171.
Takadama S, Nakaminami H, Takii T, Noguchi N. Identification and detection of USA300 methicillin-resistant Staphylococcus aureus clones with a partial deletion in the ccrB2 gene on the type IV SCCmec element. Diagn Microbiol Infect Dis 2019; 94: 86-87.
Yamaguchi T, Okamura S, Miura Y et al. Molecular characterization of community-associated methicillin-resistant Staphylococcus aureus isolated from skin and pus samples of outpatients in Japan. Microb Drug Resist 2015; 21: 441-447.
Planet PJ, Diaz L, Kolokotronis SO et al. Parallel epidemics of community-associated methicillin-resistant Staphylococcus aureus USA300 infection in North and South America. J Infect Dis 2015; 212: 1874-1882.
Huang YH, Tseng SP, Hu JM et al. Clonal spread of SCCmec type IV methicillin-resistant Staphylococcus aureus between community and hospital. Clin Microbiol Infect 2007; 13: 717-724.