Harmonizing hybridization dissonance in conservation.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
21 07 2020
21 07 2020
Historique:
received:
30
10
2019
accepted:
25
06
2020
entrez:
23
7
2020
pubmed:
23
7
2020
medline:
16
6
2021
Statut:
epublish
Résumé
A dramatic increase in the hybridization between historically allopatric species has been induced by human activities. However, the notion of hybridization seems to lack consistency in two respects. On the one hand, it is inconsistent with the biological species concept, which does not allow for interbreeding between species, and on the other hand, it is considered either as an evolutionary process leading to the emergence of new biodiversity or as a cause of biodiversity loss, with conservation implications. In the first case, we argue that conservation biology should avoid the discussion around the species concept and delimit priorities of conservation units based on the impact on biodiversity if taxa are lost. In the second case, we show that this is not a paradox but an intrinsic property of hybridization, which should be considered in conservation programmes. We propose a novel view of conservation guidelines, in which human-induced hybridization may also be a tool to enhance the likelihood of adaptation to changing environmental conditions or to increase the genetic diversity of taxa affected by inbreeding depression. The conservation guidelines presented here represent a guide for the development of programmes aimed at protecting biodiversity as a dynamic evolutionary system.
Identifiants
pubmed: 32694629
doi: 10.1038/s42003-020-1116-9
pii: 10.1038/s42003-020-1116-9
pmc: PMC7374702
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
391Subventions
Organisme : Swiss National Science Foundation
ID : 310030_185327/1
Pays : Switzerland
Organisme : Swiss National Science Foundation
ID : 31003A_182577
Pays : Switzerland
Références
Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).
pubmed: 28428393
doi: 10.1126/science.aam9317
pmcid: 28428393
Vallejo‐Marín, M. & Hiscock, S. J. Hybridization and hybrid speciation under global change. N. Phytologist 211, 1170–1187 (2016).
doi: 10.1111/nph.14004
Grabenstein, K. C. & Taylor, S. A. Breaking barriers: causes, consequences, and experimental utility of human-mediated hybridization. Trends Ecol. Evol. 33, 198–212 (2018).
pubmed: 29306562
doi: 10.1016/j.tree.2017.12.008
pmcid: 29306562
McFarlane, S. E. & Pemberton, J. M. Detecting the true extent of introgression during anthropogenic hybridization. Trends Ecol. Evol. 34, 315–326 (2019).
Todesco, M. et al. Hybridization and extinction. Evolut. Appl. 9, 892–908 (2016).
Mayr, E. Systematics and the Origin of Species, From the Viewpoint of a Zoologist. (Harvard University Press, 1942).
Buffon, G. L. L. Histoire Naturelle, Générale et Particulière: Avec la Description du Cabinet du Roi. Vol. 4 (Imprimerie Royale, 1753).
Darwin, C. On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life. (John Murray, 1859).
Dobzhansky, T. Genetics and the Origin of Species (Classics of Modern Evolution Series, 1937).
Huxley, J. Evolution. The Modern Synthesis. (1942).
Tubaro, P. L. & Lijtmaer, D. A. Hybridization patterns and the evolution of reproductive isolation in ducks. Biol. J. Linn. Soc. 77, 193–200 (2002).
doi: 10.1046/j.1095-8312.2002.00096.x
Coyne, J. A. & Orr, H. A. Patterns of speciation in Drosophila. Evolution 43, 362–381 (1989).
Coyne, J. A. & Orr, H. A. Patterns of speciation in Drosophila” revisited. Evolution 51, 295–303 (1997).
pubmed: 28568795
doi: 10.1111/j.1558-5646.1997.tb03650.x
pmcid: 28568795
Arnold, M. L. & Martin, N. H. Hybrid fitness across time and habitats. Trends Ecol. Evol. 25, 530–536, (2010).
pubmed: 20598770
doi: 10.1016/j.tree.2010.06.005
pmcid: 20598770
Behie, A. M. & Oxenham, M. F. Taxonomic Tapestries: The Threads of Evolutionary, Behavioural and Conservation Research. (ANU Press, 2015).
Zachos, F. E. Mammals and meaningful taxonomic units: the debate about species concepts and conservation. Mammal. Rev. 48, 153–159 (2018).
doi: 10.1111/mam.12121
Fitzpatrick, B. M., Ryan, M. E., Johnson, J. R., Corush, J. & Carter, E. Hybridization and the species problem in conservation. Curr. Zool. 61, 204–214 (2015).
doi: 10.1093/czoolo/61.1.206
onHoldt, B. M., Brzeski, K. E., Wilcove, D. S. & Rutledge, L. Y. Redefining the role of admixture and genomics in species conservation. Conserv. Lett. 11, e12371 (2018). v.
doi: 10.1111/conl.12371
Groves, C. P. et al. Species definitions and conservation: a review and case studies from African mammals. Conserv. Genet. 18, 1247–1256 (2017).
doi: 10.1007/s10592-017-0976-0
Frankham, R. et al. Implications of different species concepts for conserving biodiversity. Biol. Conserv. 153, 25–31 (2012).
doi: 10.1016/j.biocon.2012.04.034
Wayne, R. K. & Shaffer, H. B. Hybridization and endangered species protection in the molecular era. Mol. Ecol. 25, 2680–2689 (2016).
pubmed: 27064931
doi: 10.1111/mec.13642
pmcid: 27064931
Pasachnik, S. A., Echternacht, A. C. & Fitzpatrick, B. M. Gene trees, species and species trees in the Ctenosaura palearis clade. Conserv. Genet. 11, 1767–1781 (2010).
doi: 10.1007/s10592-010-0070-3
Nosil, P., Feder, J. L., Flaxman, S. M. & Gompert, Z. Tipping points in the dynamics of speciation. Nat. Ecol. Evol. 1, 0001 (2017).
doi: 10.1038/s41559-016-0001
Abbott, R. J. Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends Ecol. Evol. 7, 401–405 (1992).
pubmed: 21236080
doi: 10.1016/0169-5347(92)90020-C
pmcid: 21236080
Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: old ideas, new techniques. Plant Physiol. 173, 65–78 (2017).
pubmed: 27895205
doi: 10.1104/pp.16.01340
pmcid: 27895205
Capblancq, T., Després, L., Rioux, D. & Mavárez, J. Hybridization promotes speciation in Coenonympha butterflies. Mol. Ecol. 24, 6209–6222 (2015).
pubmed: 26581657
doi: 10.1111/mec.13479
pmcid: 26581657
Schumer, M., Cui, R., Powell, D. L., Rosenthal, G. G. & Andolfatto, P. Ancient hybridization and genomic stabilization in a swordtail fish. Mol. Ecol. 25, 2661–2679 (2016).
pubmed: 26937625
doi: 10.1111/mec.13602
pmcid: 26937625
Ficetola, G. F. & Stöck, M. Do hybrid-origin polyploid amphibians occupy transgressive or intermediate ecological niches compared to their diploid ancestors? J. Biogeogr. 43, 703–715 (2016).
doi: 10.1111/jbi.12667
Olave, M., Avila, L. J., Sites, J. W. Jr & Morando, M. Hybridization could be a common phenomenon within the highly diverse lizard genus Liolaemus. J. Evol. Biol. 31, 893–903 (2018).
pubmed: 29577500
doi: 10.1111/jeb.13273
pmcid: 29577500
Barrera-Guzmán, A. O., Aleixo, A., Shawkey, M. D. & Weir, J. T. Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proc. Natl Acad. Sci. USA 115, E218–E225 (2018).
pubmed: 29279398
doi: 10.1073/pnas.1717319115
pmcid: 29279398
Li, G. et al. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 26, 1–11 (2016).
pubmed: 26518481
pmcid: 4691742
doi: 10.1101/gr.186668.114
Leducq, J.-B. et al. Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nat. Microbiol. 1, 15003 (2016).
pubmed: 27571751
doi: 10.1038/nmicrobiol.2015.3
pmcid: 27571751
Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170 (2019).
pubmed: 30697003
doi: 10.1038/s41559-018-0777-y
pmcid: 30697003
Colella, J. P. et al. Whole-genome analysis of Mustela erminea finds that pulsed hybridization impacts evolution at high latitudes. Commun. Biol. 1, 51 (2018).
pubmed: 30271934
pmcid: 6123727
doi: 10.1038/s42003-018-0058-y
Cahill, J. A. et al. Genomic evidence of widespread admixture from polar bears into brown bears during the last ice age. Mol. Biol. Evol. 35, 1120–1129 (2018).
pubmed: 29471451
doi: 10.1093/molbev/msy018
pmcid: 29471451
Melo‐Ferreira, J. et al. The rise and fall of the mountain hare (Lepus timidus) during Pleistocene glaciations: expansion and retreat with hybridization in the Iberian Peninsula. Mol. Ecol. 16, 605–618 (2007).
pubmed: 17257116
doi: 10.1111/j.1365-294X.2006.03166.x
pmcid: 17257116
Dasmahapatra, K. K. et al. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature 487, 94–98 (2012).
pmcid: 3398145
doi: 10.1038/nature11041
Song, Y. et al. Adaptive introgression of anticoagulant rodent poison resistance by hybridization between old world mice. Curr. Biol. 21, 1296–1301 (2011).
pubmed: 21782438
pmcid: 3152605
doi: 10.1016/j.cub.2011.06.043
Norris, L. C. et al. Adaptive introgression in an African malaria mosquito coincident with the increased usage of insecticide-treated bed nets. Proc. Natl Acad. Sci. USA 112, 815–820 (2015).
pubmed: 25561525
doi: 10.1073/pnas.1418892112
pmcid: 25561525
Lee, Y. et al. Spatiotemporal dynamics of gene flow and hybrid fitness between the M and S forms of the malaria mosquito, Anopheles gambiae. Proc. Natl Acad. Sci. USA 110, 19854–19859 (2013).
pubmed: 24248386
doi: 10.1073/pnas.1316851110
pmcid: 24248386
Jarvis, W., Comeau, S., Colborne, S. & Robinson, B. Flexible mate choice may contribute to ecotype assortative mating in pumpkinseed sunfish (Lepomis gibbosus). J. Evol. Biol. 30, 1810–1820 (2017).
pubmed: 28590579
doi: 10.1111/jeb.13127
pmcid: 28590579
de Luis, M., Bartolomé, C., Cardo, Ó. G., Labarga, J. M. M. & Álvarez-Jiménez, J. Sympatric and allopatric niche shift of endemic Gypsophila (Caryophyllaceae) taxa in the Iberian Peninsula. PLoS ONE 13, e0206043 (2018).
pubmed: 30403709
pmcid: 6221283
doi: 10.1371/journal.pone.0206043
Currat, M., Ruedi, M., Petit, R. J. & Excoffier, L. The hidden side of invasions: Massive introgression by local genes. Evolution 62, 1908–1920 (2008).
pubmed: 18452573
pmcid: 18452573
Klopfstein, S., Currat, M. & Excoffier, L. The fate of mutations surfing on the wave of a range expansion. Mol. Biol. Evol. 23, 482–490 (2006).
pubmed: 16280540
doi: 10.1093/molbev/msj057
pmcid: 16280540
Quilodrán, C. S., Nussberger, B., Montoya-Burgos, J. I. & Currat, M. Introgression during density-dependent range expansion: European wildcats as a case study. Evolution 73, 750–761 (2019).
pubmed: 30815854
pmcid: 6594108
doi: 10.1111/evo.13704
Amorim, C. et al. Long-distance dispersal suppresses introgression of local alleles during range expansions. Heredity 118, 135–142 (2017).
pubmed: 27577693
doi: 10.1038/hdy.2016.68
pmcid: 27577693
Garcia-Elfring, A. et al. Admixture on the northern front: population genomics of range expansion in the white-footed mouse (Peromyscus leucopus) and secondary contact with the deer mouse (Peromyscus maniculatus). Heredity 119, 447 (2017).
pubmed: 28902189
pmcid: 5677999
doi: 10.1038/hdy.2017.57
Nussberger, B., Currat, M., Quilodran, C., Ponta, N. & Keller, L. Range expansion as an explanation for introgression in European wildcats. Biol. Conserv. 218, 49–56 (2018).
doi: 10.1016/j.biocon.2017.12.009
Allendorf, F. W., Leary, R. F., Spruell, P. & Wenburg, J. K. The problems with hybrids: setting conservation guidelines. Trends Ecol. Evol. 16, 613–622 (2001).
doi: 10.1016/S0169-5347(01)02290-X
Leonard, J. A., Echegaray, J., Randi, E. & Vilà, C. in (ed Gompper, M. E.) Free-Ranging Dogs and Wildlife Conservation. Chapter 7, 170–184 (Oxford University Press, 2013).
Quilodrán, C. S., Montoya-Burgos, J. I. & Currat, M. Modelling interspecific hybridization with genome exclusion to identify conservation actions: the case of native and invasive Pelophylax waterfrogs. Evolut. Appl. 8, 199–210 (2015).
doi: 10.1111/eva.12245
Brys, R. & Jacquemyn, H. Severe outbreeding and inbreeding depression maintain mating system differentiation in Epipactis (Orchidaceae). J. Evol. Biol. 29, 352–359 (2016).
pubmed: 26548440
doi: 10.1111/jeb.12787
pmcid: 26548440
Karlsson, S., Diserud, O. H., Fiske, P., Hindar, K. & Grant, H. E. W. S. Widespread genetic introgression of escaped farmed Atlantic salmon in wild salmon populations. ICES J. Mar. Sci. 73, 2488–2498 (2016).
doi: 10.1093/icesjms/fsw121
Lowe, W. H., Muhlfeld, C. C. & Allendorf, F. W. Spatial sorting promotes the spread of maladaptive hybridization. Trends Ecol. Evol. 30, 456–462 (2015).
pubmed: 26122483
doi: 10.1016/j.tree.2015.05.008
pmcid: 26122483
Macdonald, D. W. Animal behaviour and its role in carnivore conservation: examples of seven deadly threats. Anim. Behav. 120, 197–209 (2016).
doi: 10.1016/j.anbehav.2016.06.013
Ellington, E. H. & Murray, D. L. Influence of hybridization on animal space use: a case study using coyote range expansion. Oikos 124, 535–542 (2015).
doi: 10.1111/oik.01824
van den Burg, M. P. et al. The Lesser Antillean Iguana (Iguana delicatissima) on St. Eustatius: genetically depauperate and threatened by ongoing hybridization. J. Hered. 109, 426–437 (2018).
pubmed: 29471487
doi: 10.1093/jhered/esy008
pmcid: 29471487
Supple, M. A. & Shapiro, B. Conservation of biodiversity in the genomics era. Genome Biol. 19, 131 (2018).
pubmed: 30205843
pmcid: 6131752
doi: 10.1186/s13059-018-1520-3
Kearns, A. M. et al. Genomic evidence of speciation reversal in ravens. Nat. Commun. 9, 906 (2018).
pubmed: 29500409
pmcid: 5834606
doi: 10.1038/s41467-018-03294-w
Vonlanthen, P. et al. Eutrophication causes speciation reversal in whitefish adaptive radiations. Nature 482, 357–U1500 (2012).
pubmed: 22337055
doi: 10.1038/nature10824
pmcid: 22337055
Seehausen, O., Van Alphen, J. J. & Witte, F. Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277, 1808–1811 (1997).
doi: 10.1126/science.277.5333.1808
Owens, G. L. & Samuk, K. Adaptive introgression during environmental change can weaken reproductive isolation. Nat. Clim. Chang. 10, 58–62 (2020).
doi: 10.1038/s41558-019-0628-0
Yamaguchi, N., Kitchener, A., Driscoll, C. & Nussberger, B. (Felis silvestris, 2015).
Quilodrán, C. S., Nussberger, B., Macdonald, D. W., Montoya‐Burgos, J. I. & Currat, M. Projecting introgression from domestic cats into European wildcats in the Swiss Jura. Evolut. Appl. (2020).
Driscoll, C. A. et al. The Near Eastern origin of cat domestication. Science 317, 519–523 (2007).
pubmed: 17600185
pmcid: 5612713
doi: 10.1126/science.1139518
Nussberger, B., Wandeler, P., Weber, D. & Keller, L. Monitoring introgression in European wildcats in the Swiss Jura. Conserv. Genet. 15, 1219–1230 (2014).
doi: 10.1007/s10592-014-0613-0
Oliveira, R. et al. Toward a genome-wide approach for detecting hybrids: informative SNPs to detect introgression between domestic cats and European wildcats (Felis silvestris). Heredity 115, 195 (2015).
pubmed: 26103945
pmcid: 4814236
doi: 10.1038/hdy.2015.25
Lescureux, N. & Linnell, J. D. Warring brothers: the complex interactions between wolves (Canis lupus) and dogs (Canis familiaris) in a conservation context. Biol. Conserv. 171, 232–245 (2014).
doi: 10.1016/j.biocon.2014.01.032
Gottelli, D. et al. Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol. Ecol. 3, 301–312 (1994).
pubmed: 7921357
doi: 10.1111/j.1365-294X.1994.tb00070.x
pmcid: 7921357
Gottelli, D., Sillero-Zubiri, C., Marino, J., Funk, S. & Wang, J. Genetic structure and patterns of gene flow among populations of the endangered Ethiopian wolf. Anim. Conserv. 16, 234–247 (2013).
doi: 10.1111/j.1469-1795.2012.00591.x
Glover, K. A. et al. Half a century of genetic interaction between farmed and wild Atlantic salmon: status of knowledge and unanswered questions. Fish. Fish. 18, 890–927 (2017).
doi: 10.1111/faf.12214
Dolezel, M., Miklau, M., Heissenberger, A. & Reichenbecher, W. Limits of Concern: suggestions for the operationalisation of a concept to determine the relevance of adverse effects in the ERA of GMOs. Environ. Sci. Eur. 30, 39 (2018).
pubmed: 30416927
pmcid: 6208838
doi: 10.1186/s12302-018-0169-6
Hails, R. S. Genetically modified plants—the debate continues. Trends Ecol. Evol. 15, 14–18 (2000).
pubmed: 10603498
doi: 10.1016/S0169-5347(99)01751-6
pmcid: 10603498
Arriaga, L., Huerta, E., Lira-Saade, R., Moreno, E. & Alarcón, J. Assessing the risk of releasing transgenic Cucurbita spp. in Mexico. Agric. Ecosyst. Environ. 112, 291–299 (2006).
doi: 10.1016/j.agee.2005.07.007
Pandolfo, C. E. et al. Transgene escape and persistence in an agroecosystem: the case of glyphosate-resistant Brassica rapa L. in central Argentina. Environ. Sci. Pollut. Res. 25, 6251–6264 (2018).
doi: 10.1007/s11356-017-0726-3
Tsatsakis, A. M. et al. Environmental impacts of genetically modified plants: a review. Environ. Res. 156, 818–833 (2017).
pubmed: 28347490
doi: 10.1016/j.envres.2017.03.011
pmcid: 28347490
Fuchs, E. J., Martínez, A. M., Calvo, A., Muñoz, M. & Arrieta-Espinoza, G. Genetic diversity in Oryza glumaepatula wild rice populations in Costa Rica and possible gene flow from O. sativa. PeerJ 4, e1875 (2016).
pubmed: 27077002
pmcid: 4830232
doi: 10.7717/peerj.1875
Oke, K. B., Westley, P. A., Moreau, D. T. & Fleming, I. A. Hybridization between genetically modified Atlantic salmon and wild brown trout reveals novel ecological interactions. Proc. R. Soc. Lond. B 280, 20131047 (2013).
Losey, J. E., Rayor, L. S. & Carter, M. E. Transgenic pollen harms monarch larvae. Nature 399, 214–214 (1999).
pubmed: 10353241
doi: 10.1038/20338
pmcid: 10353241
Quilodrán, C. S., Currat, M. & Montoya-Burgos, J. I. A general model of distant hybridization reveals the conditions for extinction in Atlantic Salmon and Brown Trout. PLoS ONE 9, e101736 (2014).
pubmed: 25003336
pmcid: 4086968
doi: 10.1371/journal.pone.0101736
Quilodrán, C. S., Currat, M. & Montoya-Burgos, J. I. Effect of hybridization with genome exclusion on extinction risk. Conserv. Biol. 32, 1139–1149 (2018).
pubmed: 29691912
doi: 10.1111/cobi.13120
pmcid: 29691912
Christiansen, D. G. & Reyer, H. U. From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution 63, 1754–1768 (2009).
pubmed: 19245393
doi: 10.1111/j.1558-5646.2009.00673.x
pmcid: 19245393
Ainouche, M. L. & Wendel, J. F. in Evolutionary Biology: Genome Evolution, Speciation, Coevolution and Origin of Life 87–113 (Springer, 2014).
Quilodrán, C. S., Austerlitz, F., Currat, M. & Montoya-Burgos, J. I. Cryptic biological invasions: a general model of hybridization. Sci. Rep. 8, 2414 (2018).
pubmed: 29402926
pmcid: 5799175
doi: 10.1038/s41598-018-20543-6
Excoffier, L., Quilodrán, C. S. & Currat, M. in Cultural Developments in the Eurasian Paleolithic and the Origin of Anatomically Modern Humans (eds Derevianko, A.P. & Shunkov, M.) 122–137 (Department of the Institute of Archaeology and Ethnography SB RAS, 2014).
Senn, H. V. et al. Distinguishing the victim from the threat: SNP-based methods reveal the extent of introgressive hybridization between wildcats and domestic cats in Scotland and inform future in situ and ex situ management options for species restoration. Evolut. Appl. 12, 399–414 (2019).
doi: 10.1111/eva.12720
Davison, A. et al. Hybridization and the phylogenetic relationship between polecats and domestic ferrets in Britain. Biol. Conserv. 87, 155–161 (1999).
doi: 10.1016/S0006-3207(98)00067-6
Croose, E. et al. A review of the status of the Western polecat Mustela putorius: a neglected and declining species? Mammalia 82, 550–564 (2018).
doi: 10.1515/mammalia-2017-0092
Johnson, W. E. et al. Genetic restoration of the Florida panther. Science 329, 1641–1645 (2010).
pubmed: 20929847
pmcid: 20929847
doi: 10.1126/science.1192891
Clark, S. L., Schlarbaum, S. E., Saxton, A. M. & Hebard, F. V. Establishment of American chestnuts (Castanea dentata) bred for blight (Cryphonectria parasitica) resistance: influence of breeding and nursery grading. New Forests 47, 243–270 (2016).
doi: 10.1007/s11056-015-9512-6
Chan, W. Y., Hoffmann, A. A. & van Oppen, M. J. Hybridization as a conservation management tool. Conserv. Lett. 12, e12652 (2019).
doi: 10.1111/conl.12652
Fogarty, N. D. Caribbean acroporid coral hybrids are viable across life history stages. Mar. Ecol. Prog. Ser. 446, 145–159 (2012).
doi: 10.3354/meps09469
Van Valen, L. Ecological species, multispecies, and oaks. Taxon, 233–239 (1976).
Wiley, E. O. The evolutionary species concept reconsidered. Syst. Biol. 27, 17–26 (1978).
Cracraft, J. Current ornithology 159–187 (Springer, 1983).
Mallet, J. Hybrid speciation. Nature 446, 279–283 (2007).
pubmed: 17361174
doi: 10.1038/nature05706
pmcid: 17361174
Mallet, J. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Philos. Trans. R. Soc. Lond. B 363, 2971–2986 (2008).
doi: 10.1098/rstb.2008.0081
Franco-Trecu, V. et al. Sex beyond species: the first genetically analyzed case of intergeneric fertile hybridization in pinnipeds. Evolution Dev. 18, 127–136 (2016).
doi: 10.1111/ede.12183
Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).
pubmed: 20448178
pmcid: 5100745
doi: 10.1126/science.1188021
Prüfer, K. et al. A high-coverage Neandertal genome from Vindija Cave in Croatia. Science. 358, 655–658 (2017).
pubmed: 28982794
pmcid: 6185897
doi: 10.1126/science.aao1887
Villanea, F. A. & Schraiber, J. G. Multiple episodes of interbreeding between Neanderthal and modern humans. Nat. Ecol. Evolut. 3, 39 (2019).
doi: 10.1038/s41559-018-0735-8
Currat, M. & Excoffier, L. Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression. Proc. Natl Acad. Sci. USA 108, 15129–15134 (2011).
pubmed: 21911389
doi: 10.1073/pnas.1107450108
pmcid: 21911389
Enard, D. & Petrov, D. A. Evidence that RNA viruses drove adaptive introgression between Neanderthals and modern humans. Cell 175, 360–371 e313 (2018).
pubmed: 30290142
pmcid: 6176737
doi: 10.1016/j.cell.2018.08.034
Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).
pubmed: 26912863
pmcid: 4849557
doi: 10.1126/science.aad2149
Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).
pubmed: 25043035
pmcid: 4134395
doi: 10.1038/nature13408
Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).
pubmed: 21179161
pmcid: 4306417
doi: 10.1038/nature09710
Nielsen, R. et al. Tracing the peopling of the world through genomics. Nature 541, 302 (2017).
pubmed: 28102248
pmcid: 5772775
doi: 10.1038/nature21347
Castillo, A. G. F. et al. Introgression in the genus Salmo via allotriploids. Mol. Ecol. 16, 1741–1748 (2007).
pubmed: 17402987
doi: 10.1111/j.1365-294X.2007.03257.x
pmcid: 17402987