Further secondary metabolites produced by the fungus Pyricularia grisea isolated from buffelgrass (Cenchrus ciliaris).
TDDFT computations
absolute configuration
biopesticides
electronic circular dichroism
growth stimulating effect
Journal
Chirality
ISSN: 1520-636X
Titre abrégé: Chirality
Pays: United States
ID NLM: 8914261
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
21
05
2020
revised:
05
07
2020
accepted:
06
07
2020
pubmed:
22
7
2020
medline:
7
1
2021
entrez:
22
7
2020
Statut:
ppublish
Résumé
The fungal pathogen Pyricularia grisea has been studied to evaluate its production of phytotoxins for the biocontrol of the buffelgrass (Cenchrus ciliaris L.) weed. A first investigation allowed to isolate several new and known phytotoxic metabolites. However, the further investigation on the organic extract obtained from the fungus liquid culture showed the presence of other metabolites possibly contributing to its phytotoxicity. Thus, four known metabolites were isolated and identified by spectroscopic (nuclear magnetic resonance [NMR] and high-resolution electrospray ionization mass spectrometry [HRESIMS]) methods as dihydropyriculol (1), epi-dihydropyriculol (2), 3-methoxy-6,8-dihydroxy-3-methyl-3,4-dihydroisocoumarin (3), and (R)-mevalonolactone (4). The absolute configuration of 1-3 was determined for the first time by a computational analysis of their electronic circular dichroism (ECD) spectra. When the isolated compounds were bioassayed at a concentration of 5 × 10
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1234-1242Subventions
Organisme : MIUR
ID : ARS01_00985
Pays : International
Organisme : University of Naples Federico II and Compagnia di San Paolo
ID : E62F16001250003
Pays : International
Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Abella SR, Chiquoine LP, Backer DM. Ecological characteristics of sites invaded by buffelgrass (Pennisetum ciliare). Invasive Plant Sci Manag. 2012;5(4):443-453.
Franklin KA, Molina-Freaner F. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico. Conserv Biol. 2010;24(6):1664-1673.
Marshall VM, Lewis MM, Ostendorf B. Buffelgrass (Cenchrus ciliaris) as an invader and threat to biodiversity in arid environments: a review. J Arid Environ. 2012;78:1-12.
Olsson AD, Betancourt JL, Crimmins MA, Marsh SE. Constancy of local spread rates for buffelgrass (Pennisetum ciliare L.) in the Arizona Upland of the Sonoran Desert. J Arid Environ. 2012;87:136-143.
Tinoco-Ojanguren C, Reyes-Ortega I, Sánchez-Coronado ME, Molina-Freaner F, Orozco-Segovia A. Germination of an invasive Cenchrus ciliaris L. (buffelgrass) population of the Sonoran Desert under various environmental conditions. S Afr J Bot. 2016;104:112-117.
Stevens J, Falk DA. Can buffelgrass invasions be controlled in the American southwest? Using invasion ecology theory to understand buffelgrass success and develop comprehensive restoration and management. Ecol Restoration. 2009;27(4):417-427.
Dayan FE, Duke SO. Natural compounds as next generation herbicides. Plant Physiol. 2014;166(3):1090-1105.
Cimmino A, Masi M, Evidente M, Superchi S, Evidente A. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Nat Prod Rep. 2015;32(12):1629-1653.
Cordeau S, Triolet M, Wayman S, Steinberg C, Guillemin JP. Bioherbicides: dead in the water? A review of the existing products for integrated weed management. Crop Prot. 2016;87:44-49.
Radhakrishnan R, Alqarawi AA, AbdAllah EF. Bioherbicides: current knowledge on weed control mechanism. Ecotoxicol Environ Saf. 2018;158:131-138.
Masi M, Meyer S, Clement S, Cimmino A, Cristofaro M, Evidente A. Cochliotoxin, a dihydropyranopyran-4,5-dione, and its analogues produced by Cochliobolus australiensis display phytotoxic activity against buffelgrass (Cenchrus ciliaris). J Nat Prod. 2017;80(5):1241-1247.
Masi M, Meyer S, Clement S, et al. Chloromonilinic acids C and D, two phytotoxic tetrasubstituted 3-chromanonacrylic acids isolated from Cochliobolus australiensis with potential herbicidal activity against buffelgrass (Cenchrus ciliaris). J Nat Prod. 2017;80(10):2771-2777.
Santoro E, Mazzeo G, Marsico G, et al. Assignment through chiroptical methods of the absolute configuration of fungal dihydropyranpyran-4-5-diones phytotoxins, potential herbicides for buffelgrass (Cenchrus ciliaris) biocontrol. Molecules. 2019;24(17):3022.
Masi M, Freda F, Sangermano F, et al. Radicinin, a fungal phytotoxin as a target-specific bioherbicide for invasive belgrass (Cenchrus ciliaris) control. Molecules. 2019;24(6):1086.
Masi M, Meyer S, Clement S, Cimmino A, Evidente A. Effect of cultural conditions on the production of radicinin, a specific fungal phytotoxin for buffelgrass (Cenchrus ciliaris) biocontrol, by different Cochlioboulus australiensis strains. Nat Prod Res. 2019;:1-9. https://doi.org/10.1080/14786419.2019.1614583
Masi M, Freda F, Clement S, et al. Phytotoxic activity and structure-activity relationships of radicinin derivatives against the invasive weed buffelgrass (Cenchrus ciliaris). Molecules. 2019;24(15):2793.
Marsico G, Ciccone MS, Masi M, et al. Synthesis and herbicidal activity against buffelgrass (Cenchrus ciliaris) of (±)-3-deoxyradicinin. Molecules. 2019;24(17):3193.
Masi M, Meyer S, Górecki M, et al. Pyriculins A and B, two monosubstituted hex-4-ene-2,3-diols and other phytotoxic metabolites produced by Pyricularia grisea isolated from buffelgrass (Cenchrus ciliaris). Chirality. 2017;29(11):726-736.
Evidente A, Andolfi A, Cimmino A. Relationships between the stereochemistry and biological activity of fungal phytotoxins. Chirality. 2011;23(9):674-693.
Evidente A, Cimmino A, Andolfi A. The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides. Chirality. 2013;25(2):59-78.
Kono Y, Sekido S, Yamaguchi I, et al. Structures of two novel pyriculol-related compounds and identification of naturally produced epipyriculol from Pyricularia oryzae. Agric Biol Chem. 1991;55(11):2785-2791.
Li XJ, Gao JM, Chen H, Zhang AL, Tang M. Toxins from a symbiotic fungus, Leptographium qinlingensis associated with Dendroctonus armandi and their in vitro toxicities to Pinus armandi seedlings. E J Plant Pathol. 2012;134(2):239-247.
Varejão EVV, Demuner AJ, Barbosa LCDA, Barreto RW. Phytotoxic effects of metabolites from Alternaria euphorbiicola against its host plant Euphorbia heterophylla. Química Nova. 2013;36(7):1004-1007.
Masi M, Nocera P, Boari A, et al. Secondary metabolites produced by Colletotrichum lupini, the causal agent of anthachnose of lupin (Lupinus spp.). Mycologia. 2020;112(3):533-542.
SPARTAN'02. ; Wavefunction Inc.: Irvine, CA; 2002, http://www.wavefunction.com
Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian 09, Revision A.02. Wallingford, CT; 2009.
Tomasi J, Mennucci B, Cammi R. Quantum mechanical continuum solvation models. Chem Soc Rev. 2005;105(8):2999-3094.
Bruhn T, Schaumlöffel A, Hemberger Y, Bringmann G. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality. 2013;25(4):243-249.
Kameda K, Aoki H, Tanaka H, Namiki M. Studies on metabolites of Alternaria kikuchiana Tanaka, a phytopathogenic fungus of Japanese pear. Agric Biol Chem. 1973;37(9):2137-2146.
Santoro S, Vergura S, Scafato P, et al. Absolute configuration assignment to chiral natural products by biphenyl chiroptical probes: the case of the phytotoxins colletochlorin A and agropyrenol. J Nat Prod. 2020;83(4):1061-1068.
Superchi S, Rosini C, Mazzeo G, Giorgio E. Determination of molecular absolute configuration: guidelines for selecting a suitable chiroptical approach. In: Berova N, Polavarapu PL, Nakanishi K, Woody RW, eds. Comprehensive Chiroptical Spectroscopy: Applications in Stereochemical analysis of Synthetic Compounds, Natural Products, and Biomolecules. Vol.2, Chapter 12 Hoboken, NJ, USA: John Wiley & Sons, Inc; 2012:421-427.
Superchi S, Casarini D, Laurita A, Bavoso A, Rosini C. Induction of a preferred twist in a biphenyl core by stereogenic centers: a novel approach to the absolute configuration of 1,2- and 1,3-diols. Angew Chem Int Ed. 2001;40(2):451-454.
Scafato P, Superchi S. Biphenyl dioxolanes as circular dichroism probes for the assignment of absolute configuration to aliphatic diols: extending the scope to anti 1,n-diols and cyclic syn 1,2-diols. Chirality. 2010;22(1E):E3-E10.
Autschbach J. Ab initio electronic circular dichroism and optical rotatory dispersion: from organic molecules to transition metal complexes. In: Berova N, Polavarapu PL, Nakanishi K, Woody RW, eds. Comprehensive Chiroptical Spectroscopy: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules. Vol.1, Chapter 21 Hoboken, NJ, USA: John Wiley & Sons, Inc; 2012:593-642.
Superchi S, Scafato P, Górecki M, Pescitelli G. Absolute configuration determination by quantum mechanical calculation of chiroptical spectra: basics and applications to fungal metabolites. Curr Med Chem. 2018;25(2):287-320.
For recent examples from our group see:(a)Santoro S, Superchi S, Messina F, et al. Agarsenone, a cadinane sesquiterpenoid from Commiphora erythraea. J Nat Prod. 2013;76(7):1254-1259.
(b) Santoro E, Messina F, Marcotullio MC, Superchi S. Absolute configuration of bioactive furanogermacrenones from Commiphora erythraea (Ehrenb) Engl. by computational analysis of their chiroptical properties. Tetrahedron. 2014;70(43):8033-8039.
(c) Santoro E, Mazzeo G, Petrovic AG, et al. Absolute configurations of phytotoxins seiricardine A and inuloxin A obtained by chiroptical studies. Phytochemistry. 2015;116:359-366.
(d) Evidente M, Cimmino A, Zonno C, et al. Phytotoxins produced by Phoma chenopodiicola, a fungal pathogen of Chenopodium album. Phytochemistry. 2015;117:482-488.
(e) Evidente M, Santoro E, Petrovic AG, et al. Absolute configurations of phytotoxic inuloxins B and C based on experimental and computational analysis of chiroptical properties. Phytochemistry. 2016;130:328-334.
(f) Evidente M, Cimmino A, Zonno C, et al. Chenopodolans E and F, two new furopyrans produced by Phoma chenopodiicola and absolute configuration determination of chenopodolan B. Tetrahedron. 2016;72(51):8502-8507.
(g) Coronado-Aceves EW, Gigliarelli G, Garibay-Escobar A, et al. New isoflavonoids from the extract of Rhynchosia precatoria (Humb. & Bonpl. Ex Willd.) DC. and their antimycobacterial activity. J Ethnopharmacol. 2017;206:92-100.
Johnson JL, Polavarapu PL, Cimmino A, et al. Absolute configurations of chiral molecules with multiple stereogenic centers without prior knowledge of the relative configurations: a case study of inuloxin C. Chirality. 2018;30(11):1206-1214.
Salvadori P, Superchi S, Minutolo F. Anomalous face-selectivity in sharpless asymmetric dihydroxylation of o-allylbenzamides. J Org Chem. 1996;61(13):4190-4191.
Krohn K, Kock I, Elsässer B, et al. Bioactive natural products from the endophytic fungus Ascochyta sp. from Meliotus dentatus-configurational assignment by solid-state CD and TDDFT calculations. Eur J Org Chem. 2007;2007(7):1123-1129.
Kurtan T, Antus S, Pescitelli G. Electronic CD of benzene and other aromatic chromophores for determination of absolute configuration. In: Berova N, Polavarapu PL, Nakanishi K, Woody RW, eds. Comprehensive Chiroptical Spectroscopy: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules. Vol.2, Chapter 3 Hoboken, NJ, USA: John Wiley & Sons, Inc; 2012:104-107.
Antus S, Snatzke G, Steinke I. Synthese und Circulardichroismus von Steroiden mit Isochromanon-Chromophor. Liebigs Ann Chem. 1983;12:2247-2261.
Evidente A, Superchi S, Cimmino A, et al. Regiolone and isosclerone, two enantiomeric phytotoxic naphthalenone pentaketides: computational assignment of absolute configuration and its relationship with phytotoxic activity. Eur J Org Chem. 2011;28:5564-5570.