Tracking the ultraviolet-induced photochemistry of thiophenone during and after ultrafast ring opening.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
09 2020
Historique:
received: 10 11 2019
accepted: 11 06 2020
pubmed: 22 7 2020
medline: 22 7 2020
entrez: 22 7 2020
Statut: ppublish

Résumé

Photoinduced isomerization reactions lie at the heart of many chemical processes in nature. The mechanisms of such reactions are determined by a delicate interplay of coupled electronic and nuclear dynamics occurring on the femtosecond scale, followed by the slower redistribution of energy into different vibrational degrees of freedom. Here we apply time-resolved photoelectron spectroscopy with a seeded extreme ultraviolet free-electron laser to trace the ultrafast ring opening of gas-phase thiophenone molecules following ultraviolet photoexcitation. When combined with ab initio electronic structure and molecular dynamics calculations of the excited- and ground-state molecules, the results provide insights into both the electronic and nuclear dynamics of this fundamental class of reactions. The initial ring opening and non-adiabatic coupling to the electronic ground state are shown to be driven by ballistic S-C bond extension and to be complete within 350 fs. Theory and experiment also enable visualization of the rich ground-state dynamics that involve the formation of, and interconversion between, ring-opened isomers and the cyclic structure, as well as fragmentation over much longer timescales.

Identifiants

pubmed: 32690894
doi: 10.1038/s41557-020-0507-3
pii: 10.1038/s41557-020-0507-3
doi:

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

795-800

Références

Minitti, M. P. et al. Imaging molecular motion: Femtosecond X-Ray scattering of the ring opening in 1,3-cyclohexadiene. Phys. Rev. Lett. 114, 255501 (2015).
pubmed: 26197134
Pullen, M. G. et al. Imaging an aligned polyatomic molecule with laser-induced electron diffraction. Nat. Commun. 6, 7262 (2015).
pubmed: 26105804 pmcid: 4491169
Wolter, B. et al. Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene. Science 354, 308–312 (2016).
pubmed: 27846561
Attar, A. R. et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).
pubmed: 28386006
Schuurman, M. S. & Stolow, A. Dynamics at conical intersections. Annu. Rev. Phys. Chem. 69, 427–450 (2018).
pubmed: 29490199
Wolf, T. J. A. et al. The photochemical ring-opening of 1,3-cyclohexadiene imaged by ultrafast electron diffraction. Nat. Chem. 11, 504–509 (2019).
pubmed: 30988415
Ruddock, J. M. et al. A deep UV trigger for ground-state ring-opening dynamics of 1,3-cyclohexadiene. Sci. Adv. 5, eaax6625 (2019).
pubmed: 31523713 pmcid: 6731073
Stankus, B. et al. Ultrafast X-ray scattering reveals vibrational coherence following Rydberg excitation. Nat. Chem. 11, 716–721 (2019).
pubmed: 31285542
Browne, W. R. & Feringa, B. L. Light switching of molecules on surfaces. Annu. Rev. Phys. Chem. 60, 407–428 (2009).
pubmed: 18999995
Kumpulainen, T., Lang, B., Rosspeintner, A. & Vauthey, E. Ultrafast elementary photochemical processes of organic molecules in liquid solution. Chem. Rev. 117, 10826–10939 (2017).
pubmed: 27957848
Qi, J. et al. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nat. Commun. 9, 1848 (2018).
pubmed: 29748611 pmcid: 5945617
Deb, S. & Weber, P. M. The ultrafast pathway of photon-induced electrocyclic ring-opening reactions: The case of 1,3-cyclohexadiene. Annu. Rev. Phys. Chem. 62, 19–39 (2011).
pubmed: 21054174
Arruda, B. C. & Sension, R. J. Ultrafast polyene dynamics: the ring opening of 1,3-cyclohexadiene derivatives. Phys. Chem. Chem. Phys. 16, 4439–4455 (2014).
pubmed: 24457943
Petrović, V. S. et al. Transient X-ray fragmentation: Probing a prototypical photoinduced ring opening. Phys. Rev. Lett. 108, 253006 (2012).
pubmed: 23004597
Rudakov, F. & Weber, P. M. Ground state recovery and molecular structure upon ultrafast transition through conical intersections in cyclic dienes. Chem. Phys. Lett. 470, 187–190 (2009).
Adachi, S., Sato, M. & Suzuki, T. Direct observation of ground-state product formation in a 1,3-cyclohexadiene ring-opening reaction. J. Phys. Chem. Lett. 6, 343–346 (2015).
pubmed: 26261944
Breda, S., Reva, I. & Fausto, R. UV-induced unimolecular photochemistry of 2(5H)-furanone and 2(5H)-thiophenone isolated in low temperature inert matrices. Vib. Spectrosc. 50, 57–67 (2009).
Murdock, D. et al. Transient UV pump–IR probe investigation of heterocyclic ring-opening dynamics in the solution phase: the role played by nσ* states in the photoinduced reactions of thiophenone and furanone. Phys. Chem. Chem. Phys. 16, 21271–21279 (2014).
pubmed: 25175813
Allaria, E. et al. Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699–704 (2012).
Stolow, A., Bragg, A. E. & Neumark, D. M. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104, 1719–1757 (2004).
pubmed: 15080710
Suzuki, T. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. Int. Rev. Phys. Chem 31, 265–318 (2012).
Iikubo, R., Sekikawa, T., Harabuchi, Y. & Taketsugu, T. Structural dynamics of photochemical reactions probed by time-resolved photoelectron spectroscopy using high harmonic pulses. Faraday Discuss. 194, 147–160 (2016).
pubmed: 27711881
Nishitani, J., West, C. W., Higashimura, C. & Suzuki, T. Time-resolved photoelectron spectroscopy of polyatomic molecules using 42-nm vacuum ultraviolet laser based on high harmonics generation. Chem. Phys. Lett. 684, 397–401 (2017).
Smith, A. D. et al. Mapping the complete reaction path of a complex photochemical reaction. Phys. Rev. Lett. 120, 183003 (2018).
pubmed: 29775354
von Conta, A. et al. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat. Commun. 9, 3162 (2018).
Squibb, R. J. et al. Acetylacetone photodynamics at a seeded free-electron laser. Nat. Commun. 9, 63 (2018).
pubmed: 29302026 pmcid: 5754354
Gorobtsov, O. Y. et al. Seeded X-ray free-electron laser generating radiation with laser statistical properties. Nat. Commun. 9, 4498 (2018).
pubmed: 30374062 pmcid: 6206026
Xie, B.-B. & Fang, W.-H. Combined quantum trajectory mean‐field and molecular mechanical (QTMF/MM) nonadiabatic dynamics simulations on the photoinduced ring‐opening reaction of 2(5H)‐thiophenone. ChemPhotoChem 3, 897–906 (2019).
Chin, W. S. et al. He I and He II photoelectron spectra of thiophenones. J. Electron Spectrosc. Relat. Phenomena 88-91, 97–101 (1998).
Tao, H. et al. Ultrafast internal conversion in ethylene. I. The excited state lifetime. J. Chem. Phys. 134, 244306 (2011).
pubmed: 21721629
Mignolet, B., Curchod, B. F. E. & Martínez, T. J. Rich athermal ground-state chemistry triggered by dynamics through a conical intersection. Angew. Chem. Int. Ed. Engl. 55, 14993–14996 (2016).
pubmed: 27781367
Bock, H., Mohmand, S., Hirabayashi, T. & Semkow, A. Gas-phase reactions. 29. Thioacrolein. J. Am. Chem. Soc. 104, 312–313 (1982).
Yang, C.-S., Bhattacharyya, S., Liu, L., Fang, W.-H. & Liu, K. Real-time tracking of the entangled pathways in the multichannel photodissociation of acetaldehyde. Chem. Sci. https://doi.org/10.1039/d0sc00063a (2020).
Svetina, C. et al. The low density matter (LDM) beamline at FERMI: optical layout and first commissioning. J. Synchrotron Radiat. 22, 538–543 (2015).
pubmed: 25931066 pmcid: 4416672
Lyamayev, V. et al. A modular end-station for atomic, molecular, and cluster science at the low density matter beamline of FERMI@Elettra. J. Phys. B 46, 164007 (2013).
Finetti, P. et al. Pulse duration of seeded free-electron lasers. Phys. Rev. X 7, 021043 (2017).
Eland, J. H. D. et al. Complete two-electron spectra in double photoionization: the rare gases Ar, Kr, and Xe. Phys. Rev. Lett. 90, 053003 (2003).
pubmed: 12633350
Zangrando, M. et al. Recent results of PADReS, the photon analysis delivery and reduction system, from the FERMI FEL commissioning and user operations. J. Synchrotron Radiat. 22, 565–570 (2015).
pubmed: 25931069
Werner, H.-J. in Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part 2 Vol. 69 (ed. Lawley, K. P.) Ch. 1 (Wiley, 1987).
Roos, B. O. in Advances in Chemical Physics: Ab Initio Methods in Quantum Chemistry Part 2 Vol. 69 (ed. Lawley, K. P.) Ch. 7 (Wiley, 1987).
Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 56, 2257–2261 (1972).
Hariharan, P. C. & Pople, J. A. Influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chem. Acc. 28, 213–222 (1973).
Werner, H.-J. et al. MOLPRO, v.2012.1 (Molpro, 2012); https://www.molpro.net
Hudock, H. R. et al. Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine. J. Phys. Chem. A 111, 8500–8508 (2007).
pubmed: 17685594
Shiozaki, T., Győrffyet, W., Celani, C. & Werner, H.-J. Communication: Extended multi-state complete active space second-order perturbation theory: Energy and nuclear gradients. J. Chem. Phys. 135, 081106 (2011).
pubmed: 21895152
Granovsky, A. Extended multi-configuration quasi-degenerate perturbation theory: The new approach to multi-state multi-reference perturbation theory. J. Chem. Phys. 134, 214113 (2011).
pubmed: 21663350
BAGEL Brilliantly Advanced General Electronic-Structure Library v.1.2.2 (Shiozaki Group, 2018); http://www.nubakery.org
Ghigo, G., Roos, B. O. & Malmqvist, P. A. A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2). Chem. Phys. Lett. 396, 142–149 (2004).
Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061–1071 (1990).
Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6169 (1999).
Ufimtsev, I. S. & Martínez, T. J. Quantum chemistry on graphical processing units. 3. analytical energy gradients, geometry optimization, and first principles molecular dynamics. J. Chem. Theory Comput. 5, 2619–2628 (2009).
pubmed: 26631777

Auteurs

Shashank Pathak (S)

J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.

Lea M Ibele (LM)

Department of Chemistry, Durham University, Durham, UK.

Rebecca Boll (R)

European XFEL, Schenefeld, Germany.

Carlo Callegari (C)

Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.

Alexander Demidovich (A)

Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.

Benjamin Erk (B)

Deutsches Elektronen-Synchrotron, Hamburg, Germany.

Raimund Feifel (R)

Department of Physics, University of Gothenburg, Gothenburg, Sweden.

Ruaridh Forbes (R)

Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.

Michele Di Fraia (M)

Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.

Luca Giannessi (L)

Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.
Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, Italy.

Christopher S Hansen (CS)

School of Chemistry, University of New South Wales, Sydney, New South Wales, Australia.

David M P Holland (DMP)

Daresbury Laboratory, Warrington, UK.

Rebecca A Ingle (RA)

Department of Chemistry, University College London, London, UK.

Robert Mason (R)

Department of Chemistry, University of Oxford, Oxford, UK.

Oksana Plekan (O)

Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.

Kevin C Prince (KC)

Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy.
Centre for Translational Atomaterials, Swinburne University of Technology, Melbourne, Victoria, Australia.

Arnaud Rouzée (A)

Max-Born-Institut, Berlin, Germany.

Richard J Squibb (RJ)

Department of Physics, University of Gothenburg, Gothenburg, Sweden.

Jan Tross (J)

J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA.

Michael N R Ashfold (MNR)

School of Chemistry, University of Bristol, Bristol, UK. mike.ashfold@bristol.ac.uk.

Basile F E Curchod (BFE)

Department of Chemistry, Durham University, Durham, UK. basile.f.curchod@durham.ac.uk.

Daniel Rolles (D)

J.R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS, USA. rolles@phys.ksu.edu.

Classifications MeSH