Controlling Optically Driven Atomic Migration Using Crystal-Facet Control in Plasmonic Nanocavities.

SERS atomic hopping crystal facet nano-optics nanocavity picocavity single-molecule

Journal

ACS nano
ISSN: 1936-086X
Titre abrégé: ACS Nano
Pays: United States
ID NLM: 101313589

Informations de publication

Date de publication:
25 Aug 2020
Historique:
pubmed: 21 7 2020
medline: 21 7 2020
entrez: 21 7 2020
Statut: ppublish

Résumé

Plasmonic nanoconstructs are widely exploited to confine light for applications ranging from quantum emitters to medical imaging and biosensing. However, accessing extreme near-field confinement using the surfaces of metallic nanoparticles often induces permanent structural changes from light, even at low intensities. Here, we report a robust and simple technique to exploit crystal facets and their atomic boundaries to prevent the hopping of atoms along and between facet planes. Avoiding X-ray or electron microscopy techniques that perturb these atomic restructurings, we use elastic and inelastic light scattering to resolve the influence of crystal habit. A clear increase in stability is found for {100} facets with steep inter-facet angles, compared to multiple atomic steps and shallow facet curvature on spherical nanoparticles. Avoiding atomic hopping allows Raman scattering on molecules with low Raman cross-section while circumventing effects of charging and adatom binding, even over long measurement times. These nanoconstructs allow the optical probing of dynamic reconstruction in nanoscale surface science, photocatalysis, and molecular electronics.

Identifiants

pubmed: 32687323
doi: 10.1021/acsnano.0c04600
pmc: PMC7458481
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

10562-10568

Références

Science. 2012 Aug 31;337(6098):1072-4
pubmed: 22936772
Nat Mater. 2008 Jun;7(6):442-53
pubmed: 18497851
Nat Mater. 2011 Nov 23;10(12):911-21
pubmed: 22109608
Nat Mater. 2010 Mar;9(3):205-13
pubmed: 20168344
ACS Nano. 2010 Oct 26;4(10):5763-72
pubmed: 20929243
Chem Sci. 2018 Mar 21;9(16):4009-4015
pubmed: 29862005
Acc Chem Res. 2007 Jan;40(1):53-62
pubmed: 17226945
Chem Soc Rev. 2013 Apr 7;42(7):2679-724
pubmed: 23128995
Nat Mater. 2019 Jul;18(7):668-678
pubmed: 30936482
ACS Nano. 2018 Oct 23;12(10):10393-10402
pubmed: 30222317
ACS Nano. 2011 Dec 27;5(12):9450-62
pubmed: 22087471
Nano Lett. 2016 Sep 14;16(9):5605-11
pubmed: 27529641
Nat Nanotechnol. 2018 Dec;13(12):1137-1142
pubmed: 30374160
Nat Nanotechnol. 2012 Apr 15;7(6):379-82
pubmed: 22504707
Science. 1997 Feb 21;275(5303):1102-6
pubmed: 9027306
Nano Lett. 2016 Jan 13;16(1):270-5
pubmed: 26606001
Nat Nanotechnol. 2012 Jun 10;7(7):433-7
pubmed: 22683842
Nat Mater. 2020 Feb;19(2):158-162
pubmed: 31768011
Nat Commun. 2017 Mar 28;8:14891
pubmed: 28348368
J Phys Chem Lett. 2018 Dec 20;9(24):7146-7151
pubmed: 30525662
Science. 2016 Nov 11;354(6313):726-729
pubmed: 27846600
Science. 2002 Dec 13;298(5601):2176-9
pubmed: 12481134
Nano Lett. 2015 Jan 14;15(1):669-74
pubmed: 25494169
Nat Commun. 2017 Nov 3;8(1):1296
pubmed: 29101317
Nano Lett. 2015 Apr 8;15(4):2600-4
pubmed: 25734469
ACS Nano. 2017 Jan 24;11(1):850-855
pubmed: 27983796
Nano Lett. 2015 May 13;15(5):3410-9
pubmed: 25915173
Rep Prog Phys. 2013 Apr;76(4):046401
pubmed: 23455654
Nano Lett. 2020 Jun 10;20(6):4550-4557
pubmed: 32379463
Nat Commun. 2020 Feb 3;11(1):682
pubmed: 32015332
Nano Lett. 2015 Jul 8;15(7):4699-703
pubmed: 26046948
Chem Soc Rev. 2011 Jul;40(7):4167-85
pubmed: 21552612
J Am Chem Soc. 2013 Dec 11;135(49):18238-47
pubmed: 24283259
ACS Nano. 2012 Mar 27;6(3):2804-17
pubmed: 22376005
J Phys Chem Lett. 2016 Jun 16;7(12):2264-9
pubmed: 27223478
ACS Nano. 2019 Aug 27;13(8):9682-9691
pubmed: 31397561
Nature. 2013 Jun 6;498(7452):82-6
pubmed: 23739426
ACS Nano. 2015 Jan 27;9(1):825-30
pubmed: 25495220
Nano Lett. 2015 Mar 11;15(3):1635-41
pubmed: 25658226

Auteurs

Angelos Xomalis (A)

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Rohit Chikkaraddy (R)

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Eitan Oksenberg (E)

Center for Nanophotonics, AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands.

Ilan Shlesinger (I)

Center for Nanophotonics, AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands.

Junyang Huang (J)

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Erik C Garnett (EC)

Center for Nanophotonics, AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands.
Van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, Amsterdam 1090 GL, The Netherlands.

A Femius Koenderink (AF)

Center for Nanophotonics, AMOLF, Science Park 104, Amsterdam 1098 XG, The Netherlands.

Jeremy J Baumberg (JJ)

NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge CB3 0HE, United Kingdom.

Classifications MeSH