Fe-functionalized paramagnetic sporopollenin from pollen grains: one-pot synthesis using ionic liquids.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
20 07 2020
Historique:
received: 18 07 2019
accepted: 15 04 2020
entrez: 21 7 2020
pubmed: 21 7 2020
medline: 21 7 2020
Statut: epublish

Résumé

The preparation of Fe-decorated sporopollenins was achieved using pollen grains and an ionic liquid as solvent and functionalizing agent. The integrity of the organic capsules was ascertained through scanning electron microscopy studies. The presence of Fe in the capsule was investigated using FT-IR, X-ray photoemission spectroscopy and energy-dispersive X-ray spectroscopy. Electron paramagnetic resonance and magnetization measurements allowed us to demonstrate the paramagnetic behavior of our Fe-functionalized sporopollenin. A few potential applications of pollen-based systems functionalized with magnetic metal ions via ionic liquids are discussed.

Identifiants

pubmed: 32686728
doi: 10.1038/s41598-020-68875-6
pii: 10.1038/s41598-020-68875-6
pmc: PMC7371869
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

12005

Commentaires et corrections

Type : ErratumIn

Références

Choi, S., Gopalan, A. I., Ryu, J. & Lee, K. P. Hollow spherical nanocapsules of poly(pyrrole) as a promising support for Pt/Ru nanoparticles based catalyst. Mater. Chem. Phys. 120, 18–22. https://doi.org/10.1016/j.matchemphys.2009.11.035 (2010).
doi: 10.1016/j.matchemphys.2009.11.035
Abbaspourrad, A., Carroll, N. J., Kim, S. H. & Weitz, D. A. Polymer microcapsules with programmable active release. J. Am. Chem. Soc. 135, 7744–7750. https://doi.org/10.1021/ja401960f (2013).
doi: 10.1021/ja401960f
Zhang, S., Zhou, Y., Nie, W., Song, L. & Zhang, T. Preparation of uniform magnetic chitosan microcapsules and their application in adsorbing copper ion(II) and chromium ion(III). Ind. Eng. Chem. Res. 51, 14099–14106. https://doi.org/10.1021/ie301942j (2012).
doi: 10.1021/ie301942j
Ali, S. I., Heuts, J. P. A. & Herk, A. M. Vesicle-templated pH-responsive polymeric nanocapsules. Soft Matter 7, 5382–5390. https://doi.org/10.1039/C1SM05266G (2011).
doi: 10.1039/C1SM05266G
Haladjova, E., Rangelov, S., Tsvetanov, C. & Simon, P. Preparation of polymeric nanocapsules via nano-sized poly(methoxydiethyleneglycol methacrylate) colloidal templates. Polymer 55, 1621–1627. https://doi.org/10.1016/j.polymer.2014.02.026 (2014).
doi: 10.1016/j.polymer.2014.02.026
Wu, D. et al. Nanoporous polystyrene and carbon materials with core shell nanosphere-interconnected network structure. Macromolecules 44, 5846–5849. https://doi.org/10.1021/ma2013207 (2011).
doi: 10.1021/ma2013207
Choi, S. H., Lee, S. H. & Park, T. G. Temperature-sensitive pluronic/poly(ethylenimine) nanocapsules for thermally triggered disruption of intracellular endosomal compartment. Biomacromol 7, 1864–1870. https://doi.org/10.1021/bm060182a (2006).
doi: 10.1021/bm060182a
Cao, Z. & Shan, G. Synthesis of polymeric nanocapsules with a crosslinked shell through interfacial miniemulsion polymerization. J. Polym. Sci. A. 47, 1522–1534. https://doi.org/10.1002/pola.23255 (2009).
doi: 10.1002/pola.23255
Mundargi, R. C. et al. Natural sunflower pollen as a drug delivery vehicle. Small 12, 1167–1173. https://doi.org/10.1002/smll.201500860 (2015).
doi: 10.1002/smll.201500860
Diego-Taboada, A., Beckett, S. T., Atkin, S. L. & Mackenzie, G. Hollow pollen shells to enhance drug delivery. Pharmaceutics 6, 80–96. https://doi.org/10.3390/pharmaceutics6010080 (2014).
doi: 10.3390/pharmaceutics6010080 pubmed: 3978527 pmcid: 3978527
Ma, H. et al. Preparation of a novel rape pollen shell microencapsulation and its use for protein adsorption and pH-controlled release. J. Microencapsul. 31, 667–673. https://doi.org/10.3109/02652048.2014.913723 (2014).
doi: 10.3109/02652048.2014.913723
Shim, T. S., Kim, S.-H. & Yang, S. M. Elaborate design strategies toward novel microcarriers for controlled encapsulation and release. Part. Syst. Charact. 30, 9–45. https://doi.org/10.1002/ppsc.201200044 (2012).
doi: 10.1002/ppsc.201200044
Chiappe, C. et al. From pollen grains to functionalized microcapsules: a facile chemical route using ionic liquids. Green Chem. 19, 1028–1033. https://doi.org/10.1039/C6GC02892F (2017).
doi: 10.1039/C6GC02892F
Welton, T. Ionic liquids: a brief history. Biophys. Rev. 10, 691–706. https://doi.org/10.1007/s12551-018-0419-2 (2018).
doi: 10.1007/s12551-018-0419-2 pubmed: 5988633 pmcid: 5988633
Chiappe, C. et al. Exploring and exploiting different catalytic systems for the direct conversion of cellulose into levulinic acid. New J. Chem. 42, 1845–1852. https://doi.org/10.1039/C7NJ04707J (2018).
doi: 10.1039/C7NJ04707J
Palazzo, I. et al. Chiral ionic liquids supported on natural sporopollenin microcapsules. RSC Adv. 8, 21174–21183. https://doi.org/10.1039/C8RA03455A (2018).
doi: 10.1039/C8RA03455A
Fusheng, L. et al. Facile synthesis of DBU-based protic ionic liquid for efficient alcoholysis of waste poly(lactic acid) to lactate esters. Polym. Degrad. Stab. 167, 124–129. https://doi.org/10.1016/j.polymdegradstab.2019.06.028 (2019).
doi: 10.1016/j.polymdegradstab.2019.06.028
Guglielmero, L. et al. Systematic synthesis and properties evaluation of dicationic ionic liquids, and a glance into a potential new field. Front. Chem. 6, 612. https://doi.org/10.3389/fchem.2018.00612 (2018).
doi: 10.3389/fchem.2018.00612 pubmed: 6299102 pmcid: 6299102
Longhi, M. et al. A family of chiral ionic liquids from the natural pool: Relationships between structure and functional properties and electrochemical enantiodiscrimination tests. Electrochim. Acta 298, 194–209. https://doi.org/10.1016/j.electacta.2018.12.060 (2019).
doi: 10.1016/j.electacta.2018.12.060
Gubbuk, I. H. Isotherms and thermodynamics for the sorption of heavy metal ions onto functionalized sporopollenin. J. Hazard. Mater. 186, 416–422. https://doi.org/10.1016/j.jhazmat.2010.11.010 (2011).
doi: 10.1016/j.jhazmat.2010.11.010
Cimen, A., Bilgic, A., Kursunlu, A. N., Gubbuk, I. H. & Ucan, H. I. Adsorptive removal of Co(II), Ni(II), and Cu(II) ions from aqueous media using chemically modified sporopollenin of Lycopodium clavatum as novel biosorbent. Desalin. Water Treat. 52, 4837–4847. https://doi.org/10.1080/19443994.2013.806228 (2014).
doi: 10.1080/19443994.2013.806228
Sener, M., Kayan, B., Akay, S., Gozmen, B. & Kalderis, D. Fe-modified sporopollenin as a composite biosorbent for the removal of Pb2+ from aqueous solutions. Desalin. Water Treat. 57, 28294–28312. https://doi.org/10.1080/19443994.2016.1182449 (2016).
doi: 10.1080/19443994.2016.1182449
Zimmermann, B., Bagcioglu, M., Sandt, C. & Kohler, A. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure. Planta 242, 1237–1250. https://doi.org/10.1007/s00425-015-2380-7.1 (2015).
doi: 10.1007/s00425-015-2380-7.1
Jardine, P. E., Abernethy, F. A. J., Lomax, B. H., Gosling, W. D. & Fraser, W. T. Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Rev. Paleobot. Palynol 238, 1–6. https://doi.org/10.1016/j.revpalbo.2016.11.014 (2017).
doi: 10.1016/j.revpalbo.2016.11.014
Shirley, D. A. High-resolution X-ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714. https://doi.org/10.1103/PhysRevB.5.4709 (1972).
doi: 10.1103/PhysRevB.5.4709
Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D. In Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmenr Corporation, 1992, ISBN: 0-9627026-2-5.
Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051Get (2011).
doi: 10.1016/j.apsusc.2010.10.051Get
Grosvenor, A. P., Kobe, B. A., Biesinger, M. C. & McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 36, 1564–1574. https://doi.org/10.1002/sia.1984 (2004).
doi: 10.1002/sia.1984
Yan, Z., Zhuxia, Z., Tianbao, L., Xuguang, L. & Bingshe, X. XPS and XRD study of FeCl3–graphite intercalation compounds prepared by arc discharge in aqueous solution. Spectrochim. Acta A 70, 1060–1064. https://doi.org/10.1016/j.saa.2007.10.031 (2008).
doi: 10.1016/j.saa.2007.10.031
Massarotti, V. et al. Structural and spectroscopic properties of pure and doped Ba
doi: 10.1021/jp063382p
Lieb, J. et al. Ionic-liquid gating of InAs nanowire-based field-effect transistors. Adv. Funct. Mater. 29, 1804378. https://doi.org/10.1002/adfm.201804378 (2019).
doi: 10.1002/adfm.201804378
Rossella, F. et al. Nanostructured magnetic metamaterials based on metal-filled carbon nanotubes. Carbon 96, 720–728. https://doi.org/10.1016/j.carbon.2015.09.094 (2016).
doi: 10.1016/j.carbon.2015.09.094
Rossella, F., Soldano, C., Onorato, P. & Bellani, V. Tuning electronic transport in cobalt-filled carbon nanotubes using magnetic fields. Nanoscale 6, 788–794. https://doi.org/10.1039/C3NR03856D (2014).
doi: 10.1039/C3NR03856D
Rossella, F., Soldano, C., Bellani, V. & Tommasini, M. Metal-filled carbon nanotubes as a novel class of photothermal nanomaterials. Adv. Mater. 24, 2453–2458. https://doi.org/10.1002/adma.201104393 (2012).
doi: 10.1002/adma.201104393
Soldano, C., Rossella, F., Bellani, V., Giudicatti, S. & Kar, S. Cobalt nanocluster-filled carbon nanotube arrays: engineered photonic bandgap and optical reflectivity. ACS Nano 4, 6573–6578. https://doi.org/10.1021/nn101801y (2010).
doi: 10.1021/nn101801y
Pomelli, C. S., D’Andrea, F., Mezzetta, A. & Guazzelli, L. Exploiting pollen and sporopollenin for the sustainable production of microstructures. New J. Chem. https://doi.org/10.1039/C9NJ05082E (2020).
doi: 10.1039/C9NJ05082E
Abbott, J., Nagy, Z., Beyeler, F. & Nelson, B. J. Robotics in the small, part I: microbotics. IEEE Robot. Autom. Mag. 14, 92–103. https://doi.org/10.1109/MRA.2007.380641 (2007).
doi: 10.1109/MRA.2007.380641
Kumar, V. & Rezai, P. Magneto-hydrodynamic fractionation (MHF) for continuous and sheathless sorting of high-concentration paramagnetic microparticles. Biomed. Microdevices 19, 39. https://doi.org/10.1007/s10544-017-0178-z (2017).
doi: 10.1007/s10544-017-0178-z
Wang, Q., Geng, Y., Lu, X. & Zhang, S. First-row transition metal-containing ionic liquids as highly active catalysts for the glycolysis of poly(ethylene terephthalate) (PET). ACS Sustain. Chem. Eng. 3, 340–348. https://doi.org/10.1021/sc5007522 (2015).
doi: 10.1021/sc5007522
Susi, T., Pichler, T. & Ayala, P. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J. Nanotechnol. 6, 177–192. https://doi.org/10.3762/bjnano.6.17 (2015).
doi: 10.3762/bjnano.6.17 pubmed: 4311644 pmcid: 4311644
Spada, D. et al. Deepening the shear structure FeNb11O29: influence of polymorphism and doping on structural, spectroscopic and magnetic properties. Dalton Trans. 47, 15816–15826. https://doi.org/10.1039/C8DT02896F (2018).
doi: 10.1039/C8DT02896F

Auteurs

C Chiappe (C)

Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.

M J Rodriguez-Douton (MJ)

Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.

M C Mozzati (MC)

Dipartimento di Fisica, Università di Pavia, Via Bassi 6, 27100, Pavia, Italy.

D Prete (D)

NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56126, Pisa, Italy.

A Griesi (A)

Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56127, Pisa, Italy.
Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy.

L Guazzelli (L)

Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.

M Gemmi (M)

Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro, 12, 56127, Pisa, Italy.

S Caporali (S)

Dipartimento di Ingegneria Industriale, Università di Firenze, Via di S. Marta 3, 50129, Firenze, Italy.
INSTM, Via Giusti 9, 50123, Firenze, Italy.

N Calisi (N)

Dipartimento di Ingegneria Industriale, Università di Firenze, Via di S. Marta 3, 50129, Firenze, Italy.
INSTM, Via Giusti 9, 50123, Firenze, Italy.

C S Pomelli (CS)

Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy. christian.pomelli@unipi.it.

F Rossella (F)

NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza San Silvestro 12, 56126, Pisa, Italy.

Classifications MeSH