Supramolecular double-stranded Archimedean spirals and concentric toroids.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
17 07 2020
Historique:
received: 14 04 2020
accepted: 23 06 2020
entrez: 19 7 2020
pubmed: 19 7 2020
medline: 19 7 2020
Statut: epublish

Résumé

Connecting molecular-level phenomena to larger scales and, ultimately, to sophisticated molecular systems that resemble living systems remains a considerable challenge in supramolecular chemistry. To this end, molecular self-assembly at higher hierarchical levels has to be understood and controlled. Here, we report unusual self-assembled structures formed from a simple porphyrin derivative. Unexpectedly, this formed a one-dimensional (1D) supramolecular polymer that coiled to give an Archimedean spiral. Our analysis of the supramolecular polymerization by using mass-balance models suggested that the Archimedean spiral is formed at high concentrations of the monomer, whereas other aggregation types might form at low concentrations. Gratifyingly, we discovered that our porphyrin-based monomer formed supramolecular concentric toroids at low concentrations. Moreover, a mechanistic insight into the self-assembly process permitted a controlled synthesis of these concentric toroids. This study both illustrates the richness of self-assembled structures at higher levels of hierarchy and demonstrates a topological effect in noncovalent synthesis.

Identifiants

pubmed: 32681045
doi: 10.1038/s41467-020-17356-5
pii: 10.1038/s41467-020-17356-5
pmc: PMC7368029
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3578

Références

Whitesides, G. M., Mathias, J. P. & Seto, C. T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science 254, 1312–1319 (1991).
pubmed: 1962191
Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (Wiley, Weinheim, 1995).
Steed, J. W., & Atwood J. L. Supramolecular Chemistry, 2nd edn (John Wiley, England, 2009).
De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).
pubmed: 19769364
Fujita, D. et al. Self-assembly of tetravalent Goldberg polyhedral from 144 small components. Nature 540, 563–566 (2016).
pubmed: 30905932
Korevaar, P. A. et al. Pathway complexity in supramolecular polymerization. Nature 481, 492–496 (2012).
pubmed: 22258506
Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).
pubmed: 11923529
Service, R. F. How far can we push chemical self-assembly. Science 309, 95 (2005).
pubmed: 15994541
Mattia, E. & Otto, S. Supramolecular systems chemistry. Nat. Nanotechnol. 10, 111–119 (2015).
pubmed: 25652169
Grzybowski, B. A. & Huck, W. T. S. The nanotechnology of life-inspired systems. Nat. Nanotechnol. 11, 585–592 (2016).
pubmed: 27380745
Vantomme, G. & Meijer, E. W. The construction of supramolecular systems. Science 363, 1396–1397 (2019).
pubmed: 30923212
Wehner, M. & Würthner, F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat. Rev. Chem. 4, 38–53 (2020).
Schmidt, H.-W. & Würthner, F. A periodic system of supramolecular elements. Angew. Chem. Int. Ed. 59, 8766–8775 (2020).
Fukui, T. et al. Control over differentiation of a metastable supramolecular assembly in one and two dimensions. Nat. Chem. 9, 493–499 (2017).
pubmed: 28430199
Sasaki, N., Yuan, J., Fukui, T., Takeuchi, M. & Sugiyasu, K. Control over the aspect ratio of supramolecular nanosheets by molecular design. Chem. Eur. J. 26, 7840–7846 (2020).
Hasegawa, T. Physicochemical nature of perfluoroalkyl compounds induced by fluorine. Chem. Rec. 17, 903–917 (2017).
pubmed: 28485131
Ishikawa, Y., Kuwahara, H. & Kunitake, T. Self-assembly of bilayer membranes in organic solvents by novel “amphiphilic” compounds. J. Am. Chem. Soc. 111, 8530–8531 (1989).
Johansson, G., Percec, V., Ungar, G. & Zhou, J. P. Fluorophobic effect in the self-assembly of polymers and model compounds containing tapered groups into supramolecular columns. Macromolecules 29, 646–660 (1996).
Stals, P. J. M. et al. Symmetry breaking in the self-assembly of partially fluorinated benzene-1,3,5-tricarboxamides. Angew. Chem. Int. Ed. 51, 11297–11301 (2012).
Krieg, E., Weissman, H., Shimoni, E., Bar On, A. & Rybtchinski, B. J. Am. Chem. Soc. 136, 9443–9452 (2014).
pubmed: 24915305
Prasanthkumar, S., Zhang, W., Jin, W., Fukushima, T. & Aida, T. Angew. Chem. Int. Ed. 54, 11168–11172 (2015).
Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).
pubmed: 24557132
Ogi, S. et al. Kinetic control over pathway complexity in supramolecular polymerization through modulating the energy landscape by rational molecular design. Angew. Chem. Int. Ed. 53, 14363–14367 (2014).
Fukui, T., Takeuchi, M. & Sugiyasu, K. Autocatalytic time-dependent evolution of metastable two-component supramolecular assemblies to self-sorted or coassembled state. Sci. Rep. 7, 2425 (2017).
pubmed: 28546565 pmcid: 5445073
Fukui, T. et al. Direct observation and manipulation of supramolecular polymerization by high-speed atomic force microscopy. Angew. Chem. Int. Ed. 57, 15465–15470 (2018).
Jung, S. H., Bochicchio, D., Pavan, G. M., Takeuchi, M. & Sugiyasu, K. A block supramolecular polymer and its kinetically enhanced stability. J. Am. Chem. Soc. 140, 10570–10577 (2018).
pubmed: 30056699
Fukui, T., Sasaki, N., Takeuchi, M. & Sugiyasu, K. Living supramolecular polymerization based on reversible deactivation of a monomer by using a ‘dummy’ monomer. Chem. Sci. 10, 6770–6776 (2019).
pubmed: 31391897 pmcid: 6640193
Huang, X. et al. Self-assembled spiral nanoarchitecure and supramolecular chirality in Langmuir-Blodgett films of an achiral amphiphilic barbituric acid. J. Am. Chem. Soc. 126, 1322–1323 (2004).
pubmed: 14759173
Zhang, Y., Chen, P., Jiang, L., Hu, W. & Liu, M. Controllable fabrication of supramolecular nanocoils and nanoribbons and their morphology-dependent photoswitching. J. Am. Chem. Soc. 131, 2756–2757 (2009).
pubmed: 19206235
Liu, L., Kim, H.-J. & Lee, M. Langmuir-Blodgett assembly of bent-shaped rigid amphiphiles into spiral rings. Soft Matter 7, 91–95 (2011).
Li, B., Puigmarti-Luis, J., Jonas, A. M., Amabilino, D. B. & De Feyter, S. Hierarchical growth of curved organic nanowires upon evaporation induced self-assembly. Chem. Commun. 50, 13216–13219 (2014).
Saha, P. et al. Revealing the limits of intermolecular interactions: molecular rings of ferrocene derivatives on graphite surface. J. Phys. Chem. Lett. 11, 297–302 (2020).
pubmed: 31842542
Yashima, E. et al. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116, 13752–13990 (2016).
pubmed: 27754649
Yagai, S., Kitamoto, Y., Datta, S. & Adhikari, B. Supramolecular polymers capable of controlling their topology. Acc. Chem. Res. 52, 1325–1335 (2019).
pubmed: 30788954
Mabesoone, M. F. J. et al. Competing interactions in hierarchical porphyrin self-assembly introduce robustness in pathway complexity. J. Am. Chem. Soc. 140, 7810–7819 (2018).
pubmed: 29886728 pmcid: 6026832
Mabesoone, M. F. J. & Meijer, E. W. Counterintuitive consequences of competitive pathways in supramolecular polymerizations. J. Polym. Sci. 58, 25–29 (2020).
ten Eikelder, H. M. M. & Markvoort, A. J. Mass-balance models for scrutinizing supramolecular (co)polymerization in thermodynamic equilibrium. Acc. Chem. Res. 52, 3465–3474 (2019).
pubmed: 31756081 pmcid: 6921686
Weyandt, E. et al. How to determine the role of an additive on the length of supramolecular polymers? Org. Mater. 2, 129–124 (2020).
Matsumoto, N. M. et al. Polymorphism in benzene-1,3,5-tricarboxamide supramolecular assemblies in water: a subtle trade-off between structure and dynamics. J. Am. Chem. Soc. 140, 13308–13316 (2018).
pubmed: 30221520 pmcid: 6194755
Langenstroer, A. et al. Unraveling concomitant packing polymorphism in metallosupramolecular polymers. J. Am. Chem. Soc. 141, 5192–5200 (2019).
pubmed: 30785744
Wehner, M. et al. Supramolecular polymorphism in one dimensional self-assembly by kinetic pathway control. J. Am. Chem. Soc. 141, 6092–6107 (2019).
pubmed: 30892890
Aizawa, T. et al. Hydrogen bond-directed supramolecular polymorphism leading to soft and hard molecular ordering. Chem. Commun. 56, 4280–4283 (2020).
Korevaar, P. A., Schaefer, C., de Greef, T. F. A. & Meijer, E. W. Controlling chemical self-assembly by solvent-dependent dynamics. J. Am. Chem. Soc. 134, 13482–13491 (2012).
pubmed: 22808949
Jain, A., Dhiman, S., Dhayani, A., Vemula, P. K. & George, S. J. Chemical fuel-driven living and transient supramolecular polymerization. Nat. Commun. 10, 450 (2019).
pubmed: 30683874 pmcid: 6347607
Mishra, A. et al. Biomimetic temporal self-assembly via fuel driven controlled supramolecular polymerization. Nat. Commum. 9, 1295 (2018).
Chen, J. et al. Building two-dimensional materials one row at a time: avoiding the nucleation barrier. Science 362, 1135–1139 (2018).
pubmed: 30523105
Suzuki, A. et al. Topological impact on the kinetic stability of supramolecular polymers. J. Am. Chem. Soc. 141, 13196–13202 (2019).
pubmed: 31348852
Pokroy, B., Kang, S. H., Mahadevan, L. & Aizenberg, J. Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323, 237–240 (2009).
pubmed: 19131625
Kaplan, C. N. et al. Controlled growth and form of precipitating microsculptures. Science 355, 1395–1399 (2017).
pubmed: 28360323
Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 781–792 (2009).
pubmed: 19734883
Rupar, P. A., Chabanne, L., Winnik, M. A. & Manners, I. Non-centrosymmetric cylindrical micelles by unidirectional growth. Science 337, 559–562 (2012).
pubmed: 22859484
Hudson, Z. M. et al. Tailored hierarchical micelle architectures using living crystallization-driven self-assembly in two dimensions. Nat. Chem. 6, 893–898 (2014).
pubmed: 25242484
Qiu, H. et al. Uniform patchy and hollow rectangular platelet micelles from crystallizable polymer blends. Science 352, 697–701 (2016).
pubmed: 27151866
Baek, K. M., Kim, J. M., Jeong, J. W., Lee, S. Y. & Jung, Y. S. Sequentially self-assembled rings-in-mesh nanoplasmonic arrays for surface-enhanced Raman spectroscopy. Chem. Mater. 27, 5007–5013 (2015).
Chiaruttini, N. et al. Relaxation of loaded ESCRT-III spiral springs drives membrane deformation. Cell 163, 866–879 (2015).
pubmed: 26522593 pmcid: 4644223

Auteurs

Norihiko Sasaki (N)

Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan.
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.

Mathijs F J Mabesoone (MFJ)

Laboratory of Macromolecular and Organic Chemistry and the Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands.

Jun Kikkawa (J)

National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.

Tomoya Fukui (T)

National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan.

Nobutaka Shioya (N)

Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.

Takafumi Shimoaka (T)

Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.

Takeshi Hasegawa (T)

Laboratory of Chemistry for Functionalized Surfaces, Division of Environmental Chemistry, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.

Hideaki Takagi (H)

Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.

Rie Haruki (R)

Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.

Nobutaka Shimizu (N)

Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.

Shin-Ichi Adachi (SI)

Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.

E W Meijer (EW)

Laboratory of Macromolecular and Organic Chemistry and the Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB, The Netherlands.

Masayuki Takeuchi (M)

National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan. TAKEUCHI.Masayuki@nims.go.jp.

Kazunori Sugiyasu (K)

Department of Materials Physics and Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, 819-0395, Japan. SUGIYASU.Kazunori@nims.go.jp.
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan. SUGIYASU.Kazunori@nims.go.jp.

Classifications MeSH