Identification and structural characterization of lipid A from Escherichia coli, Pseudomonas putida and Pseudomonas taiwanensis using liquid chromatography coupled to high-resolution tandem mass spectrometry.
Journal
Rapid communications in mass spectrometry : RCM
ISSN: 1097-0231
Titre abrégé: Rapid Commun Mass Spectrom
Pays: England
ID NLM: 8802365
Informations de publication
Date de publication:
15 Nov 2020
15 Nov 2020
Historique:
received:
11
05
2020
revised:
06
07
2020
accepted:
11
07
2020
pubmed:
17
7
2020
medline:
7
8
2021
entrez:
17
7
2020
Statut:
ppublish
Résumé
Lipid A is a part of the lipopolysaccharide layer, which is a main component of the outer membrane from Gram-negative bacteria. It can be sensed by mammalians to identify the presence of Gram-negative bacteria in their tissues and plays a key role in the pathogenesis of bacterial infections. Lipid A is also used as an adjuvant in human vaccines, emphasizing the importance of its structural analysis. In order to distinguish and characterize various lipid A species, a liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) method was developed. Isolation of lipid A from different bacteria was carried out using a modified Bligh and Dyer extraction following a mild acid hydrolysis. Chromatography was performed using a bifunctional reversed-phase-based stationary phase. High-resolution MS using negative electrospray ionization was applied and MS/MS experiments utilizing high-energy collisional dissociation generated diagnostic product ions, which allowed the assignment of the side chains to distinct positions of the lipid A backbone. The method was applied to lipid A isolations of Escherichia coli (E. coli), Pseudomonas putida (P. putida) and Pseudomonas taiwanensis (P. taiwanensis). Various lipid A species were identified by their accurate masses and their structures were characterized using MS/MS experiments. Previously described lipid A structures from E. coli were identified and their structures confirmed by MS/MS. For the biotechnologically relevant strains P. putida and P. taiwanensis, we confirmed species by MS/MS, which have previously only been analyzed using MS. In addition, several lipid A species were discovered that have not been previously described in the literature. The combination of LC and MS/MS enabled the selective and sensitive identification and structural characterization of various lipid A species from Gram-negative bacteria. These species varied in their substituted side chains, speaking of fatty acids and phosphate groups. Characteristic product ions facilitated the assignment of side chains to distinct positions of the lipid A backbone.
Substances chimiques
Lipid A
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e8897Subventions
Organisme : Deutsche Forschungsgemeinschaft
ID : INST 211/802-1
Informations de copyright
© 2020 The Authors. Rapid Communications in Mass Spectrometry published by John Wiley & Sons Ltd.
Références
Molinaro A, Holst O, Di Lorenzo F, et al. Chemistry of lipid A: At the heart of innate immunity. Chem Eur J. 2015;21(2):500-519. https://doi.org/10.1002/chem.201403923
Park BS, Song DH, Kim HM, Choi B-S, Lee H, Lee J-O. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature. 2009;458(7242):1191-1195. https://doi.org/10.1038/nature07830
Netea MG, Van Deuren M, Kullberg BJ, Cavaillon JM, Van Der Meer JWM. Does the shape of lipid a determine the interaction of LPS with toll-like receptors? Trends Immunol. 2002;23(3):135-139. https://doi.org/10.1016/S1471-4906(01)02169-X
Matsuura M. Structural modifications of bacterial lipopolysaccharide that facilitate Gram-negative bacteria evasion of host innate immunity. Front Immunol. 2013;4:109. https://doi.org/10.3389/fimmu.2013.00109
Chilton PM, Embry CA, Mitchell TC. Effects of differences in lipid a structure on TLR4 pro-inflammatory signaling and inflammasome activation. Front Immunol. 2012;3:154. https://doi.org/10.3389/fimmu.2012.00154
Rietschel ET, Kirikae T, Schade FU, et al. Bacterial endotoxin: Molecular relationships of structure to activity and function. FASEB J. 1994;8(2):217-225. https://doi.org/10.1096/FASEBJ.8.2.8119492
Erridge C, Bennett-Guerrero E, Poxton IR. Structure and function of lipopolysaccharides. Microbes Infect. 2002;4(8):837-851. https://doi.org/10.1016/S1286-4579(02)01604-0
Kawahara K, Tsukano H, Watanabe H, Lindner B, Matsuura M. Modification of the structure and activity of lipid a in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun. 2002;70(8):4092-4098. https://doi.org/10.1128/IAI.70.8.4092-4098.2002
Li Y, Powell DA, Shaffer SA, et al. LPS remodeling is an evolved survival strategy for bacteria. Proc Natl Acad Sci. 2012;109(22):8716-8721. https://doi.org/10.1073/pnas.1202908109
Shaffer SA, Harvey MD, Goodlett DR, Ernst RK. Structural heterogeneity and environmentally regulated remodeling of Francisella tularensis subspecies novicida lipid A characterized by tandem mass spectrometry. J Am Soc Mass Spectrom. 2007;18(6):1080-1092. https://doi.org/10.1016/j.jasms.2007.03.008
Ernst RK, Yi EC, Guo L, et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science. 1999;286(5444):1561-1565. https://doi.org/10.1126/science.286.5444.1561
Gibbons HS, Kalb SR, Cotter RJ, Raetz CRH. Role of Mg2+ and pH in the modification of salmonella lipid A after endocytosis by macrophage tumour cells. Mol Microbiol. 2005;55(2):425-440. https://doi.org/10.1111/j.1365-2958.2004.04409.x
Van Der Ley P, Steeghs L, Hamstra HJ, Ten Hove J, Zomer B, Van Alphen L. Modification of lipid A biosynthesis in Neisseria meningitidis lpxL mutants: Influence on lipopolysaccharide structure, toxicity, and adjuvant activity. Infect Immun. 2001;69(10):5981-5990. https://doi.org/10.1128/IAI.69.10.5981-5990.2001
Baldrick P, Richardson D, Elliott G, Wheeler AW. Safety evaluation of monophosphoryl lipid A (MPL): An immunostimulatory adjuvant. Regul Toxicol Pharmacol. 2002;35(3):398-413. https://doi.org/10.1006/rtph.2002.1541
Kong Q, Six DA, Liu Q, et al. Phosphate groups of lipid A are essential for Salmonella enterica serovar typhimurium virulence and affect innate and adaptive immunity. Infect Immun. 2012;80(9):3215-3224. https://doi.org/10.1128/IAI.00123-12
Needham BD, Trent MS. Fortifying the barrier: The impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol. 2013;11(7):467-481. https://doi.org/10.1038/nrmicro3047
Maiti KK, DeCastro M, El-Sayed ABMAA, Foote MI, Wolfert MA, Boons GJ. Chemical synthesis and proinflammatory responses of monophosphoryl lipid A adjuvant candidates. Eur J Org Chem. 2010;2010(1):80-91. https://doi.org/10.1002/ejoc.200900973
Casella CR, Mitchell TC. Putting endotoxin to work for us: Monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci. 2008;65(20):3231-3240. https://doi.org/10.1007/s00018-008-8228-6
Hagen SR, Thompson JD, Snyder DS, Myers KR. Analysis of a monophosphoryl lipid A immunostimulant preparation from Salmonella minnesota R595 by high-performance liquid chromatography. J Chromatogr A. 1997;767(1-2):53-61. https://doi.org/10.1016/S0021-9673(97)00041-1
Kilár A, Dörnyei Á, Kocsis B. Structural characterization of bacterial lipopolysaccharides with mass spectrometry and on- and off-line separation techniques. Mass Spectrom Rev. 2013;32(2):90-117. https://doi.org/10.1002/mas.21352
Madalinski G, Fournier F, Wind FL, Afonso C, Tabet JC. Gram-negative bacterial lipid A analysis by negative electrospray ion trap mass spectrometry: Stepwise dissociations of deprotonated species under low energy CID conditions. Int J Mass Spectrom. 2006;249-250:77-92. https://doi.org/10.1016/j.ijms.2005.12.049
Kussak A, Weintraub A. Quadrupole ion-trap mass spectrometry to locate fatty acids on lipid A from Gram-negative bacteria. Anal Biochem. 2002;307(1):131-137. https://doi.org/10.1016/S0003-2697(02)00004-0
Casabuono AC, Van Der Ploeg CA, Rogé AD, Bruno SB, Couto AS. Characterization of lipid A profiles from Shigella flexneri variant X lipopolysaccharide. Rapid Commun Mass Spectrom. 2012;26(17):2011-2020. https://doi.org/10.1002/rcm.6306
Jones JW, Cohen IE, Tureek F, Goodlett DR, Ernst RK. Comprehensive structure characterization of lipid A extracted from Yersinia pestis for determination of its phosphorylation configuration. J Am Soc Mass Spectrom. 2010;21(5):785-799. https://doi.org/10.1016/j.jasms.2010.01.008
Ting YS, Shaffer SA, Jones JW, Ng WV, Ernst RK, Goodlett DR. Automated lipid A structure assignment from hierarchical tandem mass spectrometry data. J Am Soc Mass Spectrom. 2011;22(5):856-866. https://doi.org/10.1007/s13361-010-0055-y
Lukasiewicz J, Jachymek W, Niedziela T, Kenne L, Lugowski C. Structural analysis of the lipid A isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides. J Lipid Res. 2010;51(3):564-574. https://doi.org/10.1194/jlr.M001362
Hübner G, Lindner B. Separation of R-form lipopolysaccharide and lipid A by CE-Fourier-transform ion cyclotron resonance MS. Electrophoresis. 2009;30(10):1808-1816. https://doi.org/10.1002/elps.200800754
Sándor V, Berkics BV, Kilár A, Kocsis B, Kilár F, Dörnyei Á. NACE-ESI-MS/MS method for separation and characterization of phosphorylation and acylation isomers of lipid A. Electrophoresis. 2020;41(13-14):1-11. https://doi.org/10.1002/elps.201900251
Chen Y, Lehotay SJ, Moreau RA. Supercritical fluid chromatography-tandem mass spectrometry for the analysis of lipid A. Anal Methods. 2013;5(23):6864-6869. https://doi.org/10.1039/c3ay41344f
Sándor V, Dörnyei Á, Makszin L, et al. Characterization of complex, heterogeneous lipid a samples using HPLC-MS/MS technique I. overall analysis with respect to acylation, phosphorylation and isobaric distribution. J Mass Spectrom. 2016;51(11):1043-1063. https://doi.org/10.1002/jms.3839
Sándor V, Kilár A, Kilár F, Kocsis B, Dörnyei Á. Characterization of complex, heterogeneous lipid A samples using HPLC-MS/MS technique II. Structural elucidation of non-phosphorylated lipid A by negative-ion mode tandem mass spectrometry. J Mass Spectrom. 2016;51(8):615-628. https://doi.org/10.1002/jms.3786
Sándor V, Kilár A, Kilár F, Kocsis B, Dörnyei Á. Characterization of complex, heterogeneous lipid A samples using HPLC-MS/MS technique III. Positive-ion mode tandem mass spectrometry to reveal phosphorylation and acylation patterns of lipid A. J Mass Spectrom. 2018;53(2):146-161. https://doi.org/10.1002/jms.4046
Hamdy S, Haddadi A, Somayaji V, Ruan D, Samuel J. Pharmaceutical analysis of synthetic lipid A-based vaccine adjuvants in poly(d,l-lactic-co-glycolic acid) nanoparticle formulations. J Pharm Biomed Anal. 2007;44(4):914-923. https://doi.org/10.1016/j.jpba.2007.03.010
O'Brien JP, Needham BD, Henderson JC, Nowicki EM, Trent MS, Brodbelt JS. 193 nm ultraviolet photodissociation mass spectrometry for the structural elucidation of lipid A compounds in complex mixtures. Anal Chem. 2014;86(4):2138-2145. https://doi.org/10.1021/ac403796n
Henderson JC, O'Brien JP, Brodbelt JS, Trent MS. Isolation and chemical characterization of lipid A from Gram-negative bacteria. J Vis Exp. 2013;79:e50623. https://doi.org/10.3791/50623
Poblete-Castro I, Becker J, Dohnt K, Dos Santos VM, Wittmann C. Industrial biotechnology of Pseudomonas putida and related species. Appl Microbiol Biotechnol. 2012;93(6):2279-2290. https://doi.org/10.1007/s00253-012-3928-0
Wang Y, Wang J, Li Y, Wang B, Tao G, Wang X. Structure characterization of phospholipids and lipid A of Pseudomonas putida KT2442. Eur J Mass Spectrom. 2015;21(5):739-746. https://doi.org/10.1255/ejms.1390
Wang Y, Cole RB. Acid and base hydrolysis of lipid A from Enterobacter agglomerans as monitored by electrospray ionization mass spectrometry: Pertinence to detoxification mechanisms. J Mass Spectrom. 1996;31(2):138-149. https://doi.org/10.1002/(SICI)1096-9888(199602)31:2<138::AID-JMS263>3.0.CO;2-Y
Qureshi N, Takayama K, Mascagni P, Honovich J, Wong R, Cotter RJ. Complete structural determination of lipopolysaccharide obtained from deep rough mutant of Escherichia coli. Purification by high performance liquid chromatography and direct analysis by plasma desorption mass spectrometry. J Biol Chem. 1988;263(24):11971-11976. https://www.jbc.org/content/263/24/11971.short. Accessed May 8, 2020
Domon B, Costello CE. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjugate J. 1988;5(4):397-409. https://doi.org/10.1007/BF01049915
Ernst RK, Yi EC, Guo L, et al. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science. 1999;286(5444):1561-1565. https://doi.org/10.1126/science.286.5444.1561
Kulshin VA, Zähringer U, Lindner B, Jäger K-E, Dmitriev BA, Rietschel ET. Structural characterization of the lipid A component of Pseudomonas aeruginosa wild-type and rough mutant lipopolysaccharides. Eur J Biochem. 1991;198(3):697-704. https://doi.org/10.1111/j.1432-1033.1991.tb16069.x