Microdiamond in a low-grade metapelite from a Cretaceous subduction complex, western Kyushu, Japan.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
15 07 2020
15 07 2020
Historique:
received:
16
01
2020
accepted:
30
06
2020
entrez:
17
7
2020
pubmed:
17
7
2020
medline:
17
7
2020
Statut:
epublish
Résumé
Microdiamonds in metamorphic rocks are a signature of ultrahigh-pressure (UHP) metamorphism that occurs mostly at continental collision zones. Most UHP minerals, except coesite and microdiamond, have been partially or completely retrogressed during exhumation; therefore, the discovery of coesite and microdiamond is crucial to identify UHP metamorphism and to understand the tectonic history of metamorphic rocks. Microdiamonds typically occur as inclusions in minerals such as garnet. Here we report the discovery of microdiamond aggregates in the matrix of a metapelite from the Nishisonogi unit, Nagasaki Metamorphic Complex, western Kyushu, Japan. The Nishisonogi unit represents a Cretaceous subduction complex which has been considered as an epidote-blueschist subfacies metamorphic unit, and the metapelite is a member of a serpentinite mélange in the Nishisonogi unit. The temperature condition for the Nishisonogi unit is 450 °C, based on the Raman micro-spectroscopy of graphite. The coexistence of microdiamond and Mg-carbonates suggests the precipitation of microdiamond from C-O-H fluid under pressures higher than 2.8 GPa. This is the first report of metamorphic microdiamond from Japan, which reveals the hidden UHP history of the Nishisonogi unit. The tectonic evolution of Kyushu in the Japanese Archipelago should be reconsidered based on this finding.
Identifiants
pubmed: 32669632
doi: 10.1038/s41598-020-68599-7
pii: 10.1038/s41598-020-68599-7
pmc: PMC7363827
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11645Références
Ernst, G. & Liou, J. G. High- and ultrahigh-pressure metamorphism—past results, future prospects. Am. Miner. 93, 1771–1786 (2008).
Liou, J. G., Tsujimori, T., Zhang, R. Y., Katayama, I. & Maruyama, S. Global UHP metamorphism and continental subduction/collision: The Himalayan model. Int. Geol. Rev. 46, 1–27 (2004).
Dobrzhinetskaya, L. F. Microdiamonds—frontier of ultrahigh-pressure metamorphism. Gondwana Res. 21, 207–223 (2012).
Liou, J. G., Tsujimori, T., Yang, J., Zhang, R. Y. & Ernst, W. G. Recycling of crustal materials through study of ultrahigh-pressure minerals in collisional orogens, ophiolites, and mantle xenoliths: A review. J. Asian Earth Sci. 96, 386–420 (2014).
Sobolev, N. V. & Shatsky, V. S. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature 343, 742–746 (1990).
Xu, S. T. et al. Diamond from the Dabie–Shan metamorphic rocks and its implication for tectonic setting. Science 256, 80–82 (1992).
Yang, J. et al. Discovery of metamorphic diamonds in Central China: An indication of a > 4000 km-long-zone of deep subduction resulting from multiple continental collisions. Terra Nova 15, 370–379 (2003).
Wang, H. et al. Deep subduction of continental crust in accretionary orogen: Evidence from U–Pb dating on diamond-bearing zircons from the Qinling orogen, central China. Lithos 190–191, 420–429 (2014).
Song, S. G. et al. Geochronology of diamond-bearing zircons from garnet peridotite in the North Qaidam UHPM belt, Northern Tibetan Plateau: A record of complex histories from oceanic lithosphere subduction to continental collision. EPSL 234, 99–118 (2005).
Dobrzhinetskaya, L. F. et al. Microdiamond in high-grade metamorphic rocks of the Western Gneiss Region, Norway. Geology 23, 597–600 (1995).
Massonne, H. A new occurrence of microdiamonds in quartzofeldspathic rocks of the Saxonian Erzgebirge, Germany, and the metamorphic evolution. In The P.H. Nixon Volume. Proceedings of 7th International Kimberlitic Conference (eds Gurney, J. J. et al.) 533–539 (Red Roof Design CC, Capetown, 1999).
Kotokova, J., O’Brien, P. J. & Ziemann, P. Diamond and coesite discovered in Saxony-type granulite: Solution to the Variscan garnet peridotite enigma. Geology 39, 667–670 (2011).
Naemura, K. et al. Diamond and other possible ultradeep evidence discovered in the orogenic spinel-garnet peridotite from the Moldanubian zone of the Bohemian Massif, Czech Republic. In Ultrahigh-Pressure Metamorphism: 25 Years After The Discovery of Coesite and diamond (eds Dobrzhinetskaya, L. F. et al.) 77–124 (Elsevier, London, 2011).
Thiéry, V., Rolin, P., Dubois, M. & Caumon, M.-C. Discovery of metamorphic microdiamonds from the parautochthonous units of the Variscan French massif Central. Gondwana Res. 28, 954–960 (2015).
Moskos, E. D. & Kostopoulous, D. K. Diamond, former coesite and supersilicic garnet in metasedimentary rocks from the Greek Rhodope: A new ultrahigh-pressure metamorphic province established. EPSL 192, 497–506 (2001).
Frezzotti, M.-L., Huizanga, J.-M., Compagnoni, R. & Selverstone, J. Diamond formation by carbon saturation in C–O–H fluids during cold subduction of oceanic lithosphere. GCA 143, 68–86 (2014).
RuizCruiz, M. D. & Sanz de Galdeano, C. Diamond and coesite in ultrahigh-pressure-ultrahigh-temperature granulites from Cueta, Northen Rif, northwest Africa. Mineral. Mag. 76, 683–705 (2012).
Monié, P. et al.
Nishiyama, T., Mori, Y. & Shigeno, M. Jadeitites and associated metasomatic rocks from serpentinite mélanges in the Nishisonogi unit, Nagasaki Metamorphic Complex, western Kyushu, Japan: A review. J. Miner. Petrol. Sci. 112, 197–216 (2017).
Faure, M., Fabbri, O. & Monie, P. The Miocene bending of Southwest Japan: New
Hattori, H. & Shibata, K. Radiometric dating of Pre-Neogene granitic and metamorphic rocks in northwestern Kyushu, Japan—with emphasis on geotectonics of the Nishisonogi zone. Bull. Geol. Surv. Jpn. 33, 57–84 (1982).
Hattori, H., Inoue, E. & Matsui, K. Geology of Konoura district. With Geological Sheet Map at 1:50,000. Geol. Surv. Jpn. 20, 126 (1993).
Miyazaki, K., Ozaki, M., Saito, M. & Toshimitsu, S. The Kyushu–Ryukyu Arc. In Geology of Japan (ed. Moreno, T., Wallis, S., Kojima, T. & Gibbons, W.) 139–174 (2016).
Nishimura, Y. Geotectonic subdivision and areal extent of the Sangun belt, Inner Zone of Southwest Japan. J. Metamorp. Geol. 16, 129–140 (1998).
Wallis, S. & Okudaira, T. Paired metamorphic belts of SW Japan: The geology of the Sanbagawa and Ryoke metamorphic belts and the Median Tectonic Line. In Geology of Japan (eds. Moreno, T., Wallis, S., Kojima, T. & Gibbons, W.) 101–124 (2016).
Takasu, A. Prograde and retrograde eclogites in the Sambagawa metamorphic belt, Besshi district, Japan. J. Petrol 25, 619–643 (1984).
Ota, T., Terabayashi, M. & Katayama, I. Thermobaric structure and metamorphic evolution of the Iratsu eclogite body in the Sanbagawa belt, central Shikoku, Japan. Lithos 73, 95–123 (2004).
Aoya, M., Tsuboi, M. & Wallis, S. R. Origin of eclogitic metagabbro mass in the Sanbagawa belt: Geological and geochemical constraints. Lithos 89, 107–134 (2006).
Enami, M., Wallis, S. R. & Banno, S. Paragenesis of sodic pyroxene-bearing quartz schists: Implications for the P–T history of the Sanbagawa belt. Contrib. Mineral Petrol. 116, 182–198 (1994).
Inui, M. & Toriumi, M. Prograde pressure–temperature paths in the pelitic schists of the Sambagawa metamorphic belt, SW Japan. J. Metamorp. Geol. 20, 563–580 (2002).
Mori, Y., Shigeno, M., Miyazaki, K. & Nishiyama, T. Peak metamorphic temperature of the Nishisonogi unit of the Nagasaki Metamorphic Rocks, western Kyushu, Japan. J. Miner. Petrol. Sci. 114, 170–177 (2019).
Hashimoto, I. Stratigraphy and structure of formations of unknown age in Hokusatu district, Kagoshima Prefecture. Mem. Fac. Liberal Arts Kyushu Univ. 8, 47–62 (1962) ((in Japanese with English abstract)).
Caddick, M. J. & Thompson, A. B. Quantifying the tectono-metamorphic evolution of pelitic rocks from a wide range of tectonic settings: Mineral compositions in equilibrium. Contrib. Mineral Petrol. 156, 177–195 (2008).
Miyazaki, K., Mori, Y., Nishiyama, T., Suga, K. & Shigeno, M. Determination of reaction kinetics using grain size; an application for metasomatic zircon growth. Terra Nova 00, 1–7. https://doi.org/10.1111/ter.12322 (2017).
doi: 10.1111/ter.12322
Basora, A. M., Jenkins, D. M. & Bish, D. The lower-pressure stability of glaucophane in the presence of paragonite and quartz in the system Na
Beyssac, O. et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochim. Acta A. 20, 2267–2276 (2003).
Beyssac, O., Goffe, B., Chopin, C. & Rouzaud, J. N. Raman spectra of carbonaceous material in metasediments: A new geothermometer. J. Metamorp. Geol. 20, 859–871 (2002).
Kirilova, M. et al. Structural disorder of graphite and implications for graphite thermometry. Solid Earth 9, 223–231 (2018).
Ishida, H., Ogasawara, Y., Ohsumi, K. & Saito, A. Two stage growth of microdiamond in UHP dolomite marble from Kokchetaev Massif, Kazakhstan. J. Metamorp. Geol. 21, 515–522 (2003).
Dobrzhinetskaya, L. F., Wirth, R., & Green, H. Polycrystalline diamonds from the Erzgebirge ultrahigh-pressure metamorphic terrane, Germany. AGU Fall Meeting, Abstract #V24B-04 (2010).
Sunagawa, I. Natural crystallization. J. Cryst. Growth 42, 214–233 (1997).
Bostick, B. C. et al. Low-temperature microdiamond aggregates in the Maksytov Metamorphic Complex, South Ural Mountains, Russia. Am. Miner. 88, 1709–1717 (2003).
Bundy, F. P. & Kasper, J. S. Hexagonal diamond—a new form of diamond. J. Chem. Phys. 46, 3437–3446 (1967).
Simakov, S. K. Metastable nanosized diamond formation from C–H–O fluid system. J. Mater. Res. 25, 2336–2340 (2010).
Simakov, S. K. Nano- and micron-sized diamond genesis in nature; an overview. Geosci. Front. https://doi.org/10.1016/j.gsf.2017.10.006 (2017).
doi: 10.1016/j.gsf.2017.10.006
Manuella, F. C. Can nanodiamonds grow in serpentinite-hosted hydrothermal system? A theoretical modeling study. Miner. Mag. 77(8), 3163–3174 (2013).
Jiang, Q., Li, J. C. & Wilde, G. The size dependence of the diamond–graphite transition. J. Phys. Condens. Matter. 12, 5623–5627 (2000).
Mashima, H. A melting anomaly in Northwest Kyushu, Southwest Japan: A consequence of the tectonic evolution of NW Kyushu and the origin of a pseudo hot spot in a convergent zone. JVGR 186, 195–209 (2009).
Guillot, S., Hattori, K., Agard, P., Scwartz, S. & Vidal, O. Exhumation processes in oceanic and continental subduction contexts: A review. In Subduction Zone Geodynamics (eds Lallemand, S. & Funiciello, F.) 175–205 (Springer, Berlin, 2009).
Agard, P., Yamato, P., Jolivet, L. & Burov, E. Exhumation of oceanic blueschists and sclogites in subduction zones: Timing and mechanisms. Earth-Sci. Rev. 92, 53–79 (2009).
Gerya, T., Stöckhert, J. M. & Perchuk, A. I. Exhumation of high-pressure metamorphic rocks in a subduction channel: A numerical simulation. Tectonics 21, 1–15 (2002).