The effect of epinephrine on the perfusion index during ultrasound-guided supraclavicular brachial plexus block: a randomized controlled trial.
Adult
Anesthetics, Local
/ pharmacology
Brachial Plexus
/ drug effects
Brachial Plexus Block
/ adverse effects
Epinephrine
/ pharmacology
Female
Humans
Male
Middle Aged
Perfusion Index
Republic of Korea
Ropivacaine
/ pharmacology
Ultrasonography
Ultrasonography, Interventional
/ methods
Upper Extremity
/ pathology
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
14 07 2020
14 07 2020
Historique:
received:
16
01
2020
accepted:
03
06
2020
entrez:
16
7
2020
pubmed:
16
7
2020
medline:
15
12
2020
Statut:
epublish
Résumé
The perfusion index (PI) is an objective tool used to assess a successful nerve block. Epinephrine is a widely used adjuvant to local anesthetics, and it may affect PI values because of the vasoconstrictive property. The aim of this study was to investigate the influence of epinephrine on PI as an indicator of a successful block in ultrasound-guided supraclavicular brachial plexus block (SCBPB). In this randomized controlled trial, 82 adult patients underwent upper limb surgery under SCBPB were recruited between July 2018 and March 2019 in a single tertiary care center. Participants were randomly assigned to one of two groups: non-epinephrine group (n = 41) or epinephrine group (5 mcg ml
Identifiants
pubmed: 32665656
doi: 10.1038/s41598-020-68475-4
pii: 10.1038/s41598-020-68475-4
pmc: PMC7360556
doi:
Substances chimiques
Anesthetics, Local
0
Ropivacaine
7IO5LYA57N
Epinephrine
YKH834O4BH
Banques de données
CRiS
['KCT0003006']
Types de publication
Journal Article
Randomized Controlled Trial
Langues
eng
Sous-ensembles de citation
IM
Pagination
11585Références
Galvin, E. M. et al. Thermographic temperature measurement compared with pinprick and cold sensation in predicting the effectiveness of regional blocks. Anesth. Analg. 102, 598–604. https://doi.org/10.1213/01.ane.0000189556.49429.16 (2006).
doi: 10.1213/01.ane.0000189556.49429.16
pubmed: 16428569
Galvin, E. M. et al. Peripheral flow index is a reliable and early indicator of regional block success. Anesth. Analg. 103, 239–243. https://doi.org/10.1213/01.ane.0000220947.02689.9f (2006) (table of contents).
doi: 10.1213/01.ane.0000220947.02689.9f
pubmed: 16790660
Valley, M. A., Bourke, D. L., Hamill, M. P. & Raja, S. N. Time course of sympathetic blockade during epidural anesthesia: Laser Doppler flowmetry studies of regional skin perfusion. Anesth. Analg. 76, 289–294 (1993).
pubmed: 8424505
Abdelnasser, A., Abdelhamid, B., Elsonbaty, A., Hasanin, A. & Rady, A. Predicting successful supraclavicular brachial plexus block using pulse oximeter perfusion index. Br. J. Anaesth. 119, 276–280. https://doi.org/10.1093/bja/aex166 (2017).
doi: 10.1093/bja/aex166
pubmed: 28854539
Kus, A., Gurkan, Y., Gormus, S. K., Solak, M. & Toker, K. Usefulness of perfusion index to detect the effect of brachial plexus block. J. Clin. Monit. Comput. 27, 325–328. https://doi.org/10.1007/s10877-013-9439-4 (2013).
doi: 10.1007/s10877-013-9439-4
pubmed: 23397432
Curatolo, M., Petersen-Felix, S. & Arendt-Nielsen, L. Sensory assessment of regional analgesia in humans: A review of methods and applications. Anesthesiology 93, 1517–1530 (2000).
doi: 10.1097/00000542-200012000-00025
Goldman, J. M., Petterson, M. T., Kopotic, R. J. & Barker, S. J. Masimo signal extraction pulse oximetry. J. Clin. Monit. Comput. 16, 475–483 (2000).
doi: 10.1023/A:1011493521730
Ginosar, Y. et al. Pulse oximeter perfusion index as an early indicator of sympathectomy after epidural anesthesia. Acta Anaesthesiol. Scand. 53, 1018–1026 (2009).
doi: 10.1111/j.1399-6576.2009.01968.x
Mowafi, H. A., Ismail, S. A., Shafi, M. A. & Al-Ghamdi, A. A. The efficacy of perfusion index as an indicator for intravascular injection of epinephrine-containing epidural test dose in propofol-anesthetized adults. Anesth. Analg. 108, 549–553. https://doi.org/10.1213/ane.0b013e31818fc35b (2009).
doi: 10.1213/ane.0b013e31818fc35b
pubmed: 19151286
Bernards, C. M. & Kopacz, D. J. Effect of epinephrine on lidocaine clearance in vivo: A microdialysis study in humans. Anesthesiology 91, 962–968. https://doi.org/10.1097/00000542-199910000-00015 (1999).
doi: 10.1097/00000542-199910000-00015
pubmed: 10519498
Paul, D. Predicting successful supraclavicular brachial plexus block using pulse oximeter perfusion index: Is it really an objective outcome?. Br. J. Anaesth. 120, 405–406. https://doi.org/10.1016/j.bja.2017.12.003 (2018).
doi: 10.1016/j.bja.2017.12.003
pubmed: 29406190
Nash, D. T. Alpha-adrenergic blockers: Mechanism of action, blood pressure control, and effects of lipoprotein metabolism. Clin. Cardiol. 13, 764–772. https://doi.org/10.1002/clc.4960131104 (1990).
doi: 10.1002/clc.4960131104
pubmed: 1980236
Kim, Y. Interaction between beta blockers and epinephrine on hemodynamics of spontaneously hypertensive rats. Res. Commun. Chem. Pathol. Pharmacol. 80, 3–19 (1993).
pubmed: 8488340
Jeong, J. S., Shim, J. C., Shim, J. H. & Han, K. H. A comparison of motor stimulation threshold in ultrasound-guided interscalene brachial plexus block for arthroscopic shoulder surgery: A randomized trial. Can. J. Anaesth. J. Canadien d’anesthesie 63, 461–467. https://doi.org/10.1007/s12630-015-0553-2 (2016).
doi: 10.1007/s12630-015-0553-2
Tran, D. Q., Munoz, L., Zaouter, C., Russo, G. & Finlayson, R. J. A prospective, randomized comparison between single- and double-injection, ultrasound-guided supraclavicular brachial plexus block. Reg. Anesth. Pain Med. 34, 420–424. https://doi.org/10.1097/AAP.0b013e3181ae733a (2009).
doi: 10.1097/AAP.0b013e3181ae733a
pubmed: 19920418
Myers, R. R. & Heckman, H. M. Effects of local anesthesia on nerve blood flow: Studies using lidocaine with and without epinephrine. Anesthesiology 71, 757–762. https://doi.org/10.1097/00000542-198911000-00021 (1989).
doi: 10.1097/00000542-198911000-00021
pubmed: 2817471
Brown, R. S. & Rhodus, N. L. Epinephrine and local anesthesia revisited. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 100, 401–408 (2005).
doi: 10.1016/j.tripleo.2005.05.074
Lima, A. P., Beelen, P. & Bakker, J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit. Care Med. 30, 1210–1213 (2002).
doi: 10.1097/00003246-200206000-00006
Xu, Z., Zhang, J., Shen, H. & Zheng, J. Assessment of pulse oximeter perfusion index in pediatric caudal block under basal ketamine anesthesia. TheScientificWorldJournal 2013, 183493. https://doi.org/10.1155/2013/183493 (2013).
doi: 10.1155/2013/183493
pubmed: 24174910
pmcid: 3793507
Yamazaki, H., Nishiyama, J. & Suzuki, T. Use of perfusion index from pulse oximetry to determine efficacy of stellate ganglion block. Local Reg. Anesth. 5, 9–14. https://doi.org/10.2147/lra.S30257 (2012).
doi: 10.2147/lra.S30257
pubmed: 22915896
pmcid: 3417976
Şahin, ÖF., Kılıç, E. T., Aksoy, Y., Kaydu, A. & Gökçek, E. The importance of perfusion index monitoring in evaluating the efficacy of stellate ganglion blockage treatment in Raynauds disease. Libyan J. Med. 13, 1422666. https://doi.org/10.1080/19932820.2017.1422666 (2018).
doi: 10.1080/19932820.2017.1422666
pubmed: 29350104
pmcid: 5774394
Sorensen, J., Bengtsson, M., Malmqvist, E. L., Nilsson, G. & Sjoberg, F. Laser Doppler perfusion imager (LDPI)—For the assessment of skin blood flow changes following sympathetic blocks. Acta Anaesthesiol. Scand. 40, 1145–1148 (1996).
doi: 10.1111/j.1399-6576.1996.tb05578.x
Smith, G. B. et al. Predicting successful brachial plexus block using changes in skin electrical resistance. Br. J. Anaesth. 60, 703–708. https://doi.org/10.1093/bja/60.6.703 (1988).
doi: 10.1093/bja/60.6.703
pubmed: 3377954
Peters, J. K., Nishiyasu, T. & Mack, G. W. Reflex control of the cutaneous circulation during passive body core heating in humans. J. Appl. Physiol. (Bethesda, Md. 1985) 88, 1756–1764. https://doi.org/10.1152/jappl.2000.88.5.1756 (2000).
doi: 10.1152/jappl.2000.88.5.1756
Griffin, C. E. 3rd., Kaye, A. M., Bueno, F. R. & Kaye, A. D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J. 13, 214–223 (2013).
pubmed: 23789008
pmcid: 3684331
Chang, K. S., Feng, M. G. & Davis, R. F. Midazolam produces vasodilation by mixed endothelium-dependent and -independent mechanisms. Anesth. Analg. 78, 710–717. https://doi.org/10.1213/00000539-199404000-00017 (1994).
doi: 10.1213/00000539-199404000-00017
pubmed: 8135391