Neo-adjuvant therapy for triple-negative breast cancer: Insights from a network meta-analysis.
anthracycline
neo-adjuvant
pembrolizumab
platinum salts
triple-negative breast cancer
Journal
The breast journal
ISSN: 1524-4741
Titre abrégé: Breast J
Pays: United States
ID NLM: 9505539
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
28
03
2020
revised:
19
06
2020
accepted:
23
06
2020
pubmed:
14
7
2020
medline:
22
6
2021
entrez:
14
7
2020
Statut:
ppublish
Résumé
The best regimen of neo-adjuvant therapy for triple-negative breast cancer (TNBC) is unknown. Recent studies have shown promising data that adding carboplatin or pembrolizumab improves the rate of pathologic complete response (pCR) in TNBC. Therefore, we performed a network meta-analysis to define the overall, most effective, neo-adjuvant systemic therapy for TNBC. We searched for studies comparing different neo-adjuvant regimens in patients with TNBC. We performed a network meta-analysis comparing the regimens using the random-effects model. We focused on anthracycline, bevacizumab, pembrolizumab, and platinum salts (Pl). All study regimens contained a taxane. We analyzed the rate of pCR (ypT0/is, N0), and the incidence of febrile neutropenia, grade 3-grade 4 thrombocytopenia, nausea/vomiting, and diarrhea. We identified a total of 13 randomized control trials for this analysis. We compared ten different classes of regimens. We found that regimens containing Pl were significantly superior to non-PI-containing regimens for the rate of pCR. Similarly, pembrolizumab-containing regimens were associated with significantly higher pCR rates. Regimens containing bevacizumab significantly increased the rate of pCR as well. However, it was equivocal as to whether the addition of Pl to pembrolizumab-containing regimen increases pCR rates. Adding anthracycline into the regimen did not show an improved rate of pCR. In the safety analysis, regimens containing Pl were associated with a significantly higher incidence of febrile neutropenia and grade 3-grade 4 thrombocytopenia. The regimen containing anthracycline plus bevacizumab plus Pl was associated with a higher risk of gastrointestinal adverse events. For TNBC, regimens containing bevacizumab, pembrolizumab, or Pl are most effective in terms of pCR rates, though it is unclear whether combining all these medications has the greatest efficacy. Additionally, the benefit of using anthracycline in the neo-adjuvant therapy regimen for TNBC is not apparent, which may warrant a further head-to-head comparison.
Sections du résumé
BACKGROUND
The best regimen of neo-adjuvant therapy for triple-negative breast cancer (TNBC) is unknown. Recent studies have shown promising data that adding carboplatin or pembrolizumab improves the rate of pathologic complete response (pCR) in TNBC. Therefore, we performed a network meta-analysis to define the overall, most effective, neo-adjuvant systemic therapy for TNBC.
METHODS
We searched for studies comparing different neo-adjuvant regimens in patients with TNBC. We performed a network meta-analysis comparing the regimens using the random-effects model. We focused on anthracycline, bevacizumab, pembrolizumab, and platinum salts (Pl). All study regimens contained a taxane. We analyzed the rate of pCR (ypT0/is, N0), and the incidence of febrile neutropenia, grade 3-grade 4 thrombocytopenia, nausea/vomiting, and diarrhea.
RESULTS
We identified a total of 13 randomized control trials for this analysis. We compared ten different classes of regimens. We found that regimens containing Pl were significantly superior to non-PI-containing regimens for the rate of pCR. Similarly, pembrolizumab-containing regimens were associated with significantly higher pCR rates. Regimens containing bevacizumab significantly increased the rate of pCR as well. However, it was equivocal as to whether the addition of Pl to pembrolizumab-containing regimen increases pCR rates. Adding anthracycline into the regimen did not show an improved rate of pCR. In the safety analysis, regimens containing Pl were associated with a significantly higher incidence of febrile neutropenia and grade 3-grade 4 thrombocytopenia. The regimen containing anthracycline plus bevacizumab plus Pl was associated with a higher risk of gastrointestinal adverse events.
CONCLUSIONS
For TNBC, regimens containing bevacizumab, pembrolizumab, or Pl are most effective in terms of pCR rates, though it is unclear whether combining all these medications has the greatest efficacy. Additionally, the benefit of using anthracycline in the neo-adjuvant therapy regimen for TNBC is not apparent, which may warrant a further head-to-head comparison.
Substances chimiques
Carboplatin
BG3F62OND5
Types de publication
Journal Article
Meta-Analysis
Langues
eng
Sous-ensembles de citation
IM
Pagination
1717-1728Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Mieog JSD, van der Hage JA, van de Velde CJH. Neoadjuvant chemotherapy for operable breast cancer. Br J Surg. 2007;94(10):1189-1200.
Mougalian SS, Soulos PR, Killelea BK, et al. Use of neoadjuvant chemotherapy for patients with stage i to III breast cancer in the United States. Cancer. 2015;121:2544-2552.
Gadi VK, Davidson NE. Practical approach to triple-negative breast cancer. J Oncol Pract. 2017;13(5):293-300.
Chang-Qing Y, Jie L, Shi-Qi Z, et al. Recent treatment progress of triple negative breast cancer. Prog BiophysMol Biol. 2020;151:40-53.
Chaudhary LN, Wilkinson KH, Kong A. Triple-negative breast cancer: who should receive neoadjuvant chemotherapy? Surg Oncol Clin N Am. 2018;141-153.
Pernaut C, Lopez F, Ciruelos E. Standard neoadjuvant treatment in early/locally advanced breast cancer. Breast Care. 2018;13(4):244-249.
Ando M, Yamauchi H, Aogi K, et al. Randomized phase II study of weekly paclitaxel with and without carboplatin followed by cyclophosphamide/epirubicin/5-fluorouracil as neoadjuvant chemotherapy for stage II/IIIA breast cancer without HER2 overexpression. Breast Cancer Res Treat. 2014;145(2):401-409.
Sikov WM, Berry DA, Perou CM, et al. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage II to III triple-negative breast cancer: CALGB 40603 (Alliance). J Clin Oncol. 2015;33:13-21.
Nanda R, Liu MC, Yau C, et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer. JAMA Oncol. 2020;6(5):1-9.
Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. N Engl J Med. 2020;382(9):810-821.
Gerber B, Loibl S, Eidtmann H, et al. Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44). Ann Oncol. 2013;24:2978-2984.
Cortazar P, Zhang L, Untch M, et al. Pathological complete response and long-term clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet. 2014;384(9938):164-172.
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Medicine. 2009;6(7):e1000100.
Higgins JPT, Altman DG, Gotzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928.
Rücker G. Network meta-analysis, electrical networks and graph theory. Res Synth Methods. 2012;3(4):312-324.
Enriquez D, Poma Nieto N, Fuentes HA, Guerra H, Ruiz Mendoza RE, Gomez HL. Improving pathological response in locally advanced triple negative breast cancer: comparison between CbD and AC-T regimens. J Clin Oncol. 2017;35:585.
Gluz O, Nitz U, Liedtke C, et al. Comparison of neoadjuvant Nab-paclitaxel1carboplatin vs nab-paclitaxel1gemcitabine in triple-negative breast cancer: randomized WSG-ADAPT-TN trial results. J Natl Cancer Inst. 2018;110:628-637.
Wu X, Tang P, Li S, et al. A randomized and open-label phase II trial reports the efficacy of neoadjuvant lobaplatin in breast cancer. Nat Commun. 2018;9(1):832.
Chen X, Ye G, Zhang C, et al. Superior outcome after neoadjuvant chemotherapy with docetaxel, anthracycline, and cyclophosphamide versus docetaxel plus cyclophosphamide: results from the NATT trial in triple negative or HER2 positive breast cancer. Breast Cancer Res Treat. 2013;142:549-558.
Alba E, Chacon JI, Lluch A, et al. A randomized phase II trial of platinum salts in basal-like breast cancer patients in the neoadjuvant setting. Results from the GEICAM/2006-03, multicenter study. Breast Cancer Res Treat. 2012;136:487-493.
Von Minckwitz G, Schneeweiss A, Loibl S, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15:747-756.
Nahleh ZA, Barlow WE, Hayes DF, et al. SWOG S0800 (NCI CDR0000636131): addition of bevacizumab to neoadjuvant nab-paclitaxel with dose-dense doxorubicin and cyclophosphamide improves pathologic complete response (pCR) rates in inflammatory or locally advanced breast cancer. Breast Cancer Res Treat. 2016;158:485-495.
Zhang P, Yin Y, Mo H, et al. Better pathologic complete response and relapse-free survival after carboplatin plus paclitaxel compared with epirubicin plus paclitaxel as neoadjuvant chemotherapy for locally advanced triple-negative breast cancer: a randomized phase 2 trial. Oncotarget. 2016;7:60647-60656.
Poggio F, Bruzzone M, Ceppi M, et al. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis. Ann Oncol. 2018;29(7):1497-1508.
Sharma P, Klemp JR, Kimler BF, et al. Germline BRCA mutation evaluation in a prospective triple-negative breast cancer registry: implications for hereditary breast and/or ovarian cancer syndrome testing. Breast Cancer Res Treat. 2014;145:707-714.
Turner N, Tutt A, Ashworth A. Hallmarks of “BRCAness” in sporadic cancers. Nat Rev Cancer. 2004;814-819.
Hastak K, Alli E, Ford JM. Synergistic chemosensitivity of triple-negative breast cancer cell lines to Poly(ADP-Ribose) polymerase inhibition, gemcitabine, and cisplatin. Cancer Res. 2010;70(20):7970-7980.
Nanda R, Chow LQM, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: phase Ib KEYNOTE-012 study. J Clin Oncol. 2016;34(21):2460-2467.
Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: cohort B of the phase II KEYNOTE-086 study. Ann Oncol. 2019;30(3):405-411.
Ma X, Wang X, Huang J, et al. Bevacizumab addition in neoadjuvant treatment increases the pathological complete response rates in patients with HER-2 negative breast cancer especially triple negative breast cancer: a meta-analysis. PLoS One. 2016;11(8):e0160148.
Greenberg S, Rugo HS. Triple-negative breast cancer. Cancer J. 2010;16(1):33-38.
Ribatti D, Nico B, Ruggieri S, Tamma R, Simone G, Mangia A. Angiogenesis and antiangiogenesis in triple-negative breast cancer. Transl Oncol. 2016;9(5):453-457.
Ding W, Li Z, Wang C, Dai J, Ruan GD, Tu C. Anthracycline versus nonanthracycline adjuvant therapy for early breast cancer: a systematic review and meta-analysis. Medicine. 2018;97(42):e12908.
Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275-1281.
Gennari A, Sormani MP, Pronzato P, et al. HER2 status and efficacy of adjuvant anthracyclines in early breast cancer: a pooled analysis of randomized trials. J Natl Cancer Inst. 2008;100:14-20.
McGowan JV, Chung R, Maulik A, Piotrowska I, Walker JM, Yellon DM. Anthracycline chemotherapy and cardiotoxicity. Cardiovasc Drugs Ther. 2017;31(1):63-75.
Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalt Trans. 2018;47(19):6645-6653.
Egger SJ, Willson ML, Morgan J, et al. Platinum-containing regimens for metastatic breast cancer. Cochrane Database Syst Rev. 2017;6(6):CD003374.
Zhang S, Mao XD, Wang HT, Cai F, Xu J. Efficacy and safety of bevacizumab plus erlotinib versus bevacizumab or erlotinib alone in the treatment of non-small-cell lung cancer: a systematic review and meta-analysis. BMJ Open. 2016;6(6):e011714.
Nekljudova V, Loibl S, von Minckwitz G, et al. Trial-level prediction of long-term outcome based on pathologic complete response (pCR) after neoadjuvant chemotherapy for early-stage breast cancer (EBC). Contemp Clin Trials. 2018;71:194-198.
Li Y, Yang D, Chen P, et al. Efficacy and safety of neoadjuvant chemotherapy regimens for triple-negative breast cancer: a network meta-analysis. Aging. 2019;11:6286-6311.
Cortazar P, Geyer CE. Pathological complete response in neoadjuvant treatment of breast cancer. Ann Surg Oncol. 2015;22:1441-1446.