Helicobacter pylori patient isolates from South Africa and Nigeria differ in virulence factor pathogenicity profile and associated gastric disease outcome.
Breath Tests
Cephalosporins
Endoscopy
Evolution, Molecular
Female
Geography
Helicobacter pylori
Humans
Male
Microbial Sensitivity Tests
Nigeria
/ epidemiology
Phenotype
Phylogeny
Polymerase Chain Reaction
Prevalence
South Africa
/ epidemiology
Stomach Diseases
/ epidemiology
Surveys and Questionnaires
Urea
Virulence
Virulence Factors
/ metabolism
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 07 2020
10 07 2020
Historique:
received:
09
11
2019
accepted:
12
05
2020
entrez:
12
7
2020
pubmed:
12
7
2020
medline:
12
1
2021
Statut:
epublish
Résumé
Helicobacter pylori is a gram-negative, spiral-shaped bacterial pathogen and the causative agent for gastritis, peptic ulcer disease and classified as a WHO class I carcinogen. While the prevalence of H. pylori infections in Africa is among the highest in the world, the incidence of gastric cancer is comparably low. Little is known about other symptoms related to the H. pylori infection in Africa and the association with certain phenotypes of bacterial virulence. We established a network of study sites in Nigeria (NG) and South Africa (ZA) to gain an overview on the epidemiological situation. In total 220 isolates from 114 patients were analyzed and 118 different patient isolates examined for the presence of the virulence factors cagA, vacA, dupA, their phylogenetic origin and their resistance against the commonly used antibiotics amoxicillin, clarithromycin, metronidazole and tetracycline. We report that H. pylori isolates from Nigeria and South Africa differ significantly in their phylogenetic profiles and in their expression of virulence factors. VacA mosaicism is intensive, resulting in m1-m2 vacA chimeras and frequent s1m1 and s1m2 vacA subtypes in hpAfrica2 strains. Gastric lesions were diagnosed more frequent in Nigerian versus South African patients and H. pylori isolates that are resistant against one or multiple antibiotics occur frequently in both countries.
Identifiants
pubmed: 32651394
doi: 10.1038/s41598-020-66128-0
pii: 10.1038/s41598-020-66128-0
pmc: PMC7351988
doi:
Substances chimiques
Cephalosporins
0
Virulence Factors
0
Urea
8W8T17847W
nitrocefin
EWP54G0J8F
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
11409Références
Hunt, R. H. et al. Helicobacter pylori in developing countries. World Gastroenterology Organisation Global Guideline. J Gastrointestin Liver Dis 20, 299–304 (2011).
pubmed: 21961099
Hooi, J. K. Y. et al. Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology 153, 420–429, https://doi.org/10.1053/j.gastro.2017.04.022 (2017).
doi: 10.1053/j.gastro.2017.04.022
pubmed: 28456631
Weyermann, M., Rothenbacher, D. & Brenner, H. Acquisition of Helicobacter pylori infection in early childhood: independent contributions of infected mothers, fathers, and siblings. Am J Gastroenterol 104, 182–189, https://doi.org/10.1038/ajg.2008.61 (2009).
doi: 10.1038/ajg.2008.61
pubmed: 19098867
Bastos, J. et al. Sociodemographic determinants of prevalence and incidence of Helicobacter pylori infection in Portuguese adults. Helicobacter 18, 413–422, https://doi.org/10.1111/hel.12061 (2013).
doi: 10.1111/hel.12061
pubmed: 23725608
Plummer, M., Franceschi, S., Vignat, J., Forman, D. & de Martel, C. Global burden of gastric cancer attributable to Helicobacter pylori. Int J Cancer 136, 487–490, https://doi.org/10.1002/ijc.28999 (2015).
doi: 10.1002/ijc.28999
pubmed: 24889903
Malfertheiner, P. et al. Management of Helicobacter pylori infection-the Maastricht V/Florence Consensus Report. Gut 66, 6–30, https://doi.org/10.1136/gutjnl-2016-312288 (2017).
doi: 10.1136/gutjnl-2016-312288
pubmed: 27707777
Holcombe, C. Helicobacter pylori: the African enigma. Gut 33, 429–431, https://doi.org/10.1136/gut.33.4.429 (1992).
doi: 10.1136/gut.33.4.429
pubmed: 1582581
pmcid: 1374052
Miwa, H., Go, M. F. & Sato, N. H. pylori and gastric cancer: the Asian enigma. Am J Gastroenterol 97, 1106–1112, https://doi.org/10.1111/j.1572-0241.2002.05663.x (2002).
doi: 10.1111/j.1572-0241.2002.05663.x
pubmed: 12014714
Blaser, M. J. & Atherton, J. C. Helicobacter pylori persistence: biology and disease. J. Clin. Invest 113, 321–333 (2004).
doi: 10.1172/JCI20925
Odenbreit, S. et al. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287, 1497–1500 (2000).
doi: 10.1126/science.287.5457.1497
Selbach, M., Moese, S., Hauck, C. R., Meyer, T. F. & Backert, S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277, 6775–6778 (2002).
doi: 10.1074/jbc.C100754200
Huang, J. Q., Zheng, G. F., Sumanac, K., Irvine, E. J. & Hunt, R. H. Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 125, 1636–1644, https://doi.org/10.1053/j.gastro.2003.08.033 (2003).
doi: 10.1053/j.gastro.2003.08.033
pubmed: 14724815
Basso, D. et al. Clinical relevance of Helicobacter pylori cagA and vacA gene polymorphisms. Gastroenterology 135, 91–99, https://doi.org/10.1053/j.gastro.2008.03.041 (2008).
doi: 10.1053/j.gastro.2008.03.041
pubmed: 18474244
Chang, W. L., Yeh, Y. C. & Sheu, B. S. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci 25, 68, https://doi.org/10.1186/s12929-018-0466-9 (2018).
doi: 10.1186/s12929-018-0466-9
pubmed: 30205817
pmcid: 6131906
Utsch, C. & Haas, R. VacA’s Induction of VacA-Containing Vacuoles (VCVs) and Their Immunomodulatory Activities on Human T Cells. Toxins. (Basel) 8, toxins8060190 [pii], https://doi.org/10.3390/toxins8060190 [doi] (2016).
McClain, M. S., Beckett, A. C. & Cover, T. L. Helicobacter pylori Vacuolating Toxin and Gastric Cancer. Toxins (Basel) 9, https://doi.org/10.3390/toxins9100316 (2017).
Cover, T. L. & Blaser, M. J. Purification and characterization of the vacuolating toxin from Helicobacter pylori. J. Biol. Chem 267, 10570–10575 (1992).
pubmed: 1587837
Cover, T. L., Krishna, U. S., Israel, D. A. & Peek, R. M. Induction of gastric epithelial cell apoptosis by Helicobacter pylori vacuolating cytotoxin. Cancer Res 63, 951–957 (2003).
pubmed: 12615708
Atherton, J. C. et al. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. J. Biol. Chem 270, 17771–17777 (1995).
doi: 10.1074/jbc.270.30.17771
Sheikh, A. F. et al. CagA and vacA allelic combination of Helicobacter pylori in gastroduodenal disorders. Microb Pathog 122, 144–150, https://doi.org/10.1016/j.micpath.2018.06.023 (2018).
doi: 10.1016/j.micpath.2018.06.023
pubmed: 29908307
Xiang, Z. Y. et al. Analysis of expression of CagA and VacA virulence factors in 43 strains of Helicobacter pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. Infection and Immunity 63, 94–98 (1995).
doi: 10.1128/IAI.63.1.94-98.1995
Harrison, U. et al. Helicobacter pylori strains from a Nigerian cohort show divergent antibiotic resistance rates and a uniform pathogenicity profile. PLoS. ONE 12, e0176454, https://doi.org/10.1371/journal.pone.0176454 [doi];PONE-D-16-38434 [pii] (2017).
Lu, H., Hsu, P. I., Graham, D. Y. & Yamaoka, Y. Duodenal ulcer promoting gene of Helicobacter pylori. Gastroenterology 128, 833–848 (2005).
doi: 10.1053/j.gastro.2005.01.009
Gomes, L. I. et al. Lack of association between Helicobacter pylori infection with dupA-positive strains and gastroduodenal diseases in Brazilian patients. Int J Med Microbiol 298, 223–230, https://doi.org/10.1016/j.ijmm.2007.05.006 (2008).
doi: 10.1016/j.ijmm.2007.05.006
pubmed: 17897881
Zhang, Z. et al. The Helicobacter pylori duodenal ulcer promoting gene, dupA in China. BMC Gastroenterol 8, 49, https://doi.org/10.1186/1471-230x-8-49 (2008).
doi: 10.1186/1471-230x-8-49
pubmed: 18950522
pmcid: 2584642
Nguyen, L. T. et al. Helicobacter pylori dupA gene is not associated with clinical outcomes in the Japanese population. Clin Microbiol Infect 16, 1264–1269, https://doi.org/10.1111/j.1469-0691.2009.03081.x (2010).
doi: 10.1111/j.1469-0691.2009.03081.x
pubmed: 19832706
Abadi, A. T., Taghvaei, T., Wolfram, L. & Kusters, J. G. Infection with Helicobacter pylori strains lacking dupA is associated with an increased risk of gastric ulcer and gastric cancer development. J. Med. Microbiol 61, 23–30, jmm.0.027052-0 [pii], https://doi.org/10.1099/jmm.0.027052-0 [doi] (2012).
Delahay, R. M., Croxall, N. J. & Stephens, A. D. Phylogeographic diversity and mosaicism of the Helicobacter pylori tfs integrative and conjugative elements. Mob DNA 9, 5, https://doi.org/10.1186/s13100-018-0109-4 (2018).
doi: 10.1186/s13100-018-0109-4
pubmed: 29416569
pmcid: 5785829
Fischer, W. et al. A comprehensive analysis of Helicobacter pylori plasticity zones reveals that they are integrating conjugative elements with intermediate integration specificity. BMC. Genomics 15, 310, 1471-2164-15-310 [pii], https://doi.org/10.1186/1471-2164-15-310 [doi] (2014).
Matsunari, O. et al. Rare Helicobacter pylori Virulence Genotypes in Bhutan. Sci Rep 6, 22584, https://doi.org/10.1038/srep22584 (2016).
doi: 10.1038/srep22584
pubmed: 26931643
pmcid: 4773856
Schmitt, W. & Haas, R. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol. Microbiol 12, 307–319 (1994).
doi: 10.1111/j.1365-2958.1994.tb01019.x
Cover, T. L., Vaughn, S. G., Cao, P. & Blaser, M. J. Potentiation of Helicobacter pylori vacuolating toxin activity by nicotine and other weak bases. JID 166, 1073–1078 (1992).
doi: 10.1093/infdis/166.5.1073
Dore, M. P., Graham, D. Y. & Sepulveda, A. R. Different penicillin-binding protein profiles in amoxicillin-resistant Helicobacter pylori. Helicobacter 4, 154–161 (1999).
doi: 10.1046/j.1523-5378.1999.99310.x
Gerrits, M. M. et al. Multiple mutations in or adjacent to the conserved penicillin-binding protein motifs of the penicillin-binding protein 1A confer amoxicillin resistance to Helicobacter pylori. Helicobacter 11, 181–187, https://doi.org/10.1111/j.1523-5378.2006.00398.x (2006).
doi: 10.1111/j.1523-5378.2006.00398.x
pubmed: 16684266
Kwon, Y. H. et al. Specific mutations of penicillin-binding protein 1A in 77 clinically acquired amoxicillin-resistant Helicobacter pylori strains in comparison with 77 amoxicillin-susceptible strains. Helicobacter 22, https://doi.org/10.1111/hel.12437 (2017).
Rimbara, E., Noguchi, N., Kawai, T. & Sasatsu, M. Mutations in penicillin-binding proteins 1, 2 and 3 are responsible for amoxicillin resistance in Helicobacter pylori. J Antimicrob Chemother 61, 995–998, https://doi.org/10.1093/jac/dkn051 (2008).
doi: 10.1093/jac/dkn051
pubmed: 18276599
Tseng, Y. S. et al. Amoxicillin resistance with beta-lactamase production in Helicobacter pylori. Eur J Clin Invest 39, 807–812, https://doi.org/10.1111/j.1365-2362.2009.02166.x (2009).
doi: 10.1111/j.1365-2362.2009.02166.x
pubmed: 19614952
Korona-Glowniak, I. et al. Antibiotic Resistance and Genotypes of Helicobacter pylori Strains in Patients with Gastroduodenal Disease in Southeast Poland. J Clin Med 8, https://doi.org/10.3390/jcm8071071 (2019).
Patel, S. K., Pratap, C. B., Jain, A. K., Gulati, A. K. & Nath, G. Diagnosis of Helicobacter pylori: what should be the gold standard? World J Gastroenterol 20, 12847–12859, https://doi.org/10.3748/wjg.v20.i36.12847 (2014).
doi: 10.3748/wjg.v20.i36.12847
pubmed: 25278682
pmcid: 4177467
Ndububa, D. A. et al. Correlation between endoscopic suspicion of gastric cancer and histology in Nigerian patients with dyspepsia. Trop. Gastroenterol 28, 69–71 (2007).
pubmed: 18050843
Fallone, C. A., Moss, S. F. & Malfertheiner, P. Reconciliation of Recent Helicobacter pylori Treatment Guidelines in a Time of Increasing Resistance to Antibiotics. Gastroenterology 157, 44–53, https://doi.org/10.1053/j.gastro.2019.04.011 (2019).
doi: 10.1053/j.gastro.2019.04.011
pubmed: 30998990
Laxminarayan, R. et al. Access to effective antimicrobials: a worldwide challenge. Lancet 387, 168–175, https://doi.org/10.1016/s0140-6736(15)00474-2 (2016).
doi: 10.1016/s0140-6736(15)00474-2
pubmed: 26603918
Jaka, H. et al. The magnitude of antibiotic resistance to Helicobacter pylori in Africa and identified mutations which confer resistance to antibiotics: systematic review and meta-analysis. BMC Infect Dis 18, 193, https://doi.org/10.1186/s12879-018-3099-4 (2018).
doi: 10.1186/s12879-018-3099-4
pubmed: 29699490
pmcid: 5921563
Kwon, D. H. et al. High-level beta-lactam resistance associated with acquired multidrug resistance in Helicobacter pylori. Antimicrob Agents Chemother 47, 2169–2178, https://doi.org/10.1128/aac.47.7.2169-2178.2003 (2003).
doi: 10.1128/aac.47.7.2169-2178.2003
pubmed: 12821464
pmcid: 161855
Alm, R. A. et al. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397, 176–180 (1999).
doi: 10.1038/16495
Fischer, W. et al. Strain-specific genes of Helicobacter pylori: genome evolution driven by a novel type IV secretion system and genomic island transfer. Nucleic Acids Res 38, 6089–6101 (2010).
doi: 10.1093/nar/gkq378
Linz, B. et al. An African origin for the intimate association between humans and Helicobacter pylori. Nature 445, 915–918 (2007).
doi: 10.1038/nature05562
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 35, 1547–1549, https://doi.org/10.1093/molbev/msy096 (2018).
doi: 10.1093/molbev/msy096
pubmed: 29722887
pmcid: 29722887
Fischer, W. & Haas, R. The RecA protein of Helicobacter pylori requires a posttranslational modification for full activity. J. Bacteriol 186, 777–784 (2004).
doi: 10.1128/JB.186.3.777-784.2004
Haas, R., Meyer, T. F. & van Putten, J. P. M. Aflagellated mutants of Helicobacter pylori generated by genetic transformation of naturally competent strains using transposon shuttle mutagenesis. Mol. Microbiol 8, 753–760 (1993).
doi: 10.1111/j.1365-2958.1993.tb01618.x
Schindele, F., Weiss, E., Haas, R. & Fischer, W. Quantitative analysis of CagA type IV secretion by Helicobacter pylori reveals substrate recognition and translocation requirements. Mol. Microbiol 100, 188–203, https://doi.org/10.1111/mmi.13309 [doi] (2016).
Dixon, M. F., Genta, R. M., Yardley, J. H. & Correa, P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol 20, 1161–1181 (1996).
doi: 10.1097/00000478-199610000-00001
Stolte, M. & Meining, A. The updated Sydney system: classification and grading of gastritis as the basis of diagnosis and treatment. Can. J. Gastroenterol 15, 591–598 (2001).
doi: 10.1155/2001/367832