Laser digital patterning of conductive electrodes using metal oxide nanomaterials.
CuO
Digital patterning
ITO
Laser
NiO
Reductive sintering
ZnO
Journal
Nano convergence
ISSN: 2196-5404
Titre abrégé: Nano Converg
Pays: England
ID NLM: 101695675
Informations de publication
Date de publication:
06 Jul 2020
06 Jul 2020
Historique:
received:
08
05
2020
accepted:
23
06
2020
entrez:
8
7
2020
pubmed:
8
7
2020
medline:
8
7
2020
Statut:
epublish
Résumé
As an alternative approach to the conventional deposition and photolithographic processes, the laser digital patterning (LDP) process, which is also known as the laser direct writing process, has attracted considerable attention because it is a non-photolithographic, non-vacuum, on-demand, and cost-effective electrode fabrication route that can be applied to various substrates, including heat-sensitive flexible substrates. The LDP process was initially developed using noble metal nanoparticles (NPs) such as Au and Ag because such materials are free from oxidation even in a nanosize configuration. Thus, the NPs must be fused together to form continuous conductive structures upon laser irradiation. However, common metals are easily oxidized at the nanoscale and exist in oxidized forms owing to the extremely large surface-to-volume ratio of NPs. Therefore, to fabricate conductive electrodes using common metal NPs via the LDP process, laser irradiation should be used to sinter the NPs and simultaneously induce additional photochemical reactions, such as reduction, and defect structure modification to increase the conductivity of the electrodes. This review summarizes recent studies on the LDP process in which metal oxide NPs, such as ITO, ZnO, CuO, and NiO, were exclusively utilized for fabricating conductive electrodes. The outlook of the LDP process for these materials is also discussed as a method that can be used together with or as a replacement for conventional ones to produce next-generation transparent conductors, sensors, and electronics.
Identifiants
pubmed: 32632474
doi: 10.1186/s40580-020-00232-9
pii: 10.1186/s40580-020-00232-9
pmc: PMC7338299
doi:
Types de publication
Journal Article
Review
Langues
eng
Pagination
23Subventions
Organisme : National Research Foundation of Korea
ID : CAMM-2019M3A6B3030637
Organisme : Gachon University
ID : GCU-2019-0386
Références
Nano Converg. 2019 May 8;6(1):14
pubmed: 31065822
Nanotechnology. 2019 Feb 15;30(7):074001
pubmed: 30523977
J Environ Sci (China). 2018 Jul;69:115-124
pubmed: 29941246
ACS Appl Mater Interfaces. 2019 May 1;11(17):15773-15780
pubmed: 30990648
Adv Mater. 2020 Jan;32(2):e1905527
pubmed: 31696977
Nano Converg. 2019 Jul 22;6(1):24
pubmed: 31328241
Opt Express. 2011 Aug 1;19(16):15452-8
pubmed: 21934909
Nanomaterials (Basel). 2016 Mar 09;6(3):
pubmed: 28344304
Nanoscale. 2016 Oct 14;8(40):17608-17615
pubmed: 27722430
Sci Rep. 2019 Feb 11;9(1):1773
pubmed: 30741970
Nano Converg. 2019 Aug 1;6(1):25
pubmed: 31367883
ACS Appl Mater Interfaces. 2019 Dec 11;11(49):45844-45852
pubmed: 31718133
Nano Converg. 2019 Jun 20;6(1):21
pubmed: 31218437
J Hazard Mater. 2020 Mar 5;385:121570
pubmed: 31753669
Nanoscale. 2016 Apr 28;8(16):8976-85
pubmed: 27073978
Nano Converg. 2019 Apr 2;6(1):10
pubmed: 30937630
Adv Mater. 2017 Jul;29(26):
pubmed: 28436054
ACS Nano. 2014 Oct 28;8(10):9807-14
pubmed: 25130917
ACS Nano. 2012 Sep 25;6(9):7858-66
pubmed: 22881148
Science. 2012 Dec 7;338(6112):1321-4
pubmed: 23138979
Nano Converg. 2019 Jul 8;6(1):22
pubmed: 31281949
Sci Rep. 2018 Feb 12;8(1):2825
pubmed: 29434296
Adv Mater. 2015 May 6;27(17):2762-7
pubmed: 25821011
J Colloid Interface Sci. 2020 Apr 1;565:546-554
pubmed: 31982721
ACS Appl Mater Interfaces. 2018 Jun 20;10(24):20599-20610
pubmed: 29889496
Sci Rep. 2016 Jul 28;6:30759
pubmed: 27465263
ACS Appl Mater Interfaces. 2014 Feb 26;6(4):2786-90
pubmed: 24471931
Nano Converg. 2019 Jul 1;6(1):20
pubmed: 31257552
Nano Converg. 2019 Feb 21;6(1):6
pubmed: 30788636
Adv Mater. 2015 Nov 4;27(41):6397-403
pubmed: 26372164
Nano Converg. 2019 Sep 9;6(1):28
pubmed: 31495907
Int Sch Res Notices. 2014 Dec 16;2014:856592
pubmed: 27437488
Nano Converg. 2019 Jun 10;6(1):18
pubmed: 31179510
Nano Converg. 2019 Mar 18;6(1):9
pubmed: 30880366
PLoS One. 2012;7(8):e42315
pubmed: 22900011
ACS Appl Mater Interfaces. 2017 Apr 5;9(13):11711-11720
pubmed: 28314096
Nano Lett. 2014 Nov 12;14(11):6298-305
pubmed: 25302453
Nanoscale. 2019 Jan 3;11(2):725-732
pubmed: 30565620
J Phys Chem B. 2006 Feb 16;110(6):2549-54
pubmed: 16471854
Adv Mater. 2011 Dec 15;23(47):5689-93
pubmed: 22083936
Biomed Opt Express. 2016 Oct 31;7(11):4787-4802
pubmed: 27896016
Micromachines (Basel). 2018 May 28;9(6):
pubmed: 30424197