Assessing thermal sensitivity using transient heat and cold stimuli combined with a Bayesian adaptive method in a clinical setting: A proof of concept study.


Journal

European journal of pain (London, England)
ISSN: 1532-2149
Titre abrégé: Eur J Pain
Pays: England
ID NLM: 9801774

Informations de publication

Date de publication:
10 2020
Historique:
received: 03 01 2020
revised: 15 06 2020
accepted: 21 06 2020
pubmed: 1 7 2020
medline: 4 3 2021
entrez: 1 7 2020
Statut: ppublish

Résumé

Quantitative sensory testing of thermal detection abilities is used as a clinical tool to assess the function of pain pathways. The most common procedure to assess thermal sensitivity, the 'method of limits', provides a quick but rough estimate of detection thresholds. Here, we investigate the potential of evaluating not only the threshold but also the slope of the psychometric functions for cold and warm detection. A convenience sample of 15 patients with diabetes mellitus (DM) and 15 age-matched healthy controls (HC) was tested. Thirty brief (100 ms) stimuli of each modality were applied to the volar wrist and foot dorsum. Cold and warm stimuli were delivered with a Peltier thermode and a temperature-controlled CO Assessment of the slope and threshold of the psychometric function for thermal detection took about 10 min. The ability to detect warmth was not reduced in DM patients as compared to HC. Cold detection performance assessed using slope or threshold parameters separated DM from HC with good discriminative power. Discrimination was further increased when both parameters were used together (93% sensitivity and 87% specificity), indicating that they provide complementary information on patient status. The psi method may be an interesting alternative to the classical method of limits for thermal QST. Current QST protocols provide an incomplete and potentially biased estimate of sensory detection performance. We propose a method that estimates the slope and the threshold of the psychometric function, defining heat and cold sensory detection performance, in only a few minutes. Furthermore, we provide preliminary evidence that combining slope and threshold parameters of cold detection performance leads to a better discriminative ability than relying solely on the threshold.

Sections du résumé

BACKGROUND
Quantitative sensory testing of thermal detection abilities is used as a clinical tool to assess the function of pain pathways. The most common procedure to assess thermal sensitivity, the 'method of limits', provides a quick but rough estimate of detection thresholds. Here, we investigate the potential of evaluating not only the threshold but also the slope of the psychometric functions for cold and warm detection.
METHOD
A convenience sample of 15 patients with diabetes mellitus (DM) and 15 age-matched healthy controls (HC) was tested. Thirty brief (100 ms) stimuli of each modality were applied to the volar wrist and foot dorsum. Cold and warm stimuli were delivered with a Peltier thermode and a temperature-controlled CO
RESULTS
Assessment of the slope and threshold of the psychometric function for thermal detection took about 10 min. The ability to detect warmth was not reduced in DM patients as compared to HC. Cold detection performance assessed using slope or threshold parameters separated DM from HC with good discriminative power. Discrimination was further increased when both parameters were used together (93% sensitivity and 87% specificity), indicating that they provide complementary information on patient status.
CONCLUSION
The psi method may be an interesting alternative to the classical method of limits for thermal QST.
SIGNIFICANCE
Current QST protocols provide an incomplete and potentially biased estimate of sensory detection performance. We propose a method that estimates the slope and the threshold of the psychometric function, defining heat and cold sensory detection performance, in only a few minutes. Furthermore, we provide preliminary evidence that combining slope and threshold parameters of cold detection performance leads to a better discriminative ability than relying solely on the threshold.

Identifiants

pubmed: 32603504
doi: 10.1002/ejp.1628
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1812-1821

Subventions

Organisme : ERC
ID : 336130-PROBING-PAIN

Informations de copyright

© 2020 European Pain Federation - EFIC®.

Références

Axelsson, H. E., Minde, J. K., Sonesson, A., Toolanen, G., Hogestatt, E. D., & Zygmunt, P. M. (2009). Transient receptor potential vanilloid 1, vanilloid 2 and melastatin 8 immunoreactive nerve fibers in human skin from individuals with and without Norrbottnian congenital insensitivity to pain. Neuroscience, 162, 1322-1332. https://doi.org/10.1016/j.neuroscience.2009.05.052
Backonja, M. M., Attal, N., Baron, R., Bouhassira, D., Drangholt, M., Dyck, P. J., … Ziegler, D. (2013). Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain, 154, 1807-1819. https://doi.org/10.1016/j.pain.2013.05.047
Bril, V., & Perkins, B. A. (2002). Validation of the Toronto Clinical Scoring System for diabetic polyneuropathy. Diabetes Care, 25, 2048-2052. https://doi.org/10.2337/diacare.25.11.2048
Devigili, G., Rinaldo, S., Lombardi, R., Cazzato, D., Marchi, M., Salvi, E., … Lauria, G. (2019). Diagnostic criteria for small fibre neuropathy in clinical practice and research. Brain, 142(12), 3728-3736. https://doi.org/10.1093/brain/awz333
Fruhstorfer, H., Lindblom, U., & Schmidt, W. C. (1976). Method for quantitative estimation of thermal thresholds in patients. Journal of Neurology, Neurosurgery & Psychiatry, 39, 1071-1075. https://doi.org/10.1136/jnnp.39.11.1071
Gorus, E., De Raedt, R., & Mets, T. (2006). Diversity, dispersion and inconsistency of reaction time measures: Effects of age and task complexity. Aging Clinical and Experimental Research, 18, 407-417. http://doi.org/10.1007/bf03324837
Jeffreys, H. (1998). The theory of probability. Oxford: OUP.
Jeon, S., & Caterina, M. J. (2018). Molecular basis of peripheral innocuous warmth sensitivity. Handbook of Clinical Neurology, 156, 69-82.
Kingdom, F. A., & Prins, N. (2010). Psychophysics: A practical introduction. London, UK: Academic Press: An Imprint of Elsevier.
Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive estimation of psychometric slope and threshold. Vision Research, 39, 2729-2737. https://doi.org/10.1016/S0042-6989(98)00285-5
Loseth, S., Stalberg, E., Jorde, R., & Mellgren, S. I. (2008). Early diabetic neuropathy: Thermal thresholds and intraepidermal nerve fibre density in patients with normal nerve conduction studies. Journal of Neurology, 255, 1197-1202. https://doi.org/10.1007/s00415-008-0872-0
Mucke, M., Cuhls, H., Radbruch, L., Baron, R., Maier, C., Tolle, T., … Rolke, R. (2016). Quantitative sensory testing (QST). English version. Der Schmerz, https://doi.org/10.1007/s00482-015-0093-2
Preston, D. C., & Shapiro, B. E. (2013). Polyneuropathy. In D. C. Preston & B. E. Shapiro (Eds.), Electromyography and neuromuscular disorders (3rd edn., pp. 384-416). London, UK: W.B. Saunders.
Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika, 83, 251-266. https://doi.org/10.1093/biomet/83.2.251
Rage, M., Van Acker, N., Knaapen, M. W., Timmers, M., Streffer, J., Hermans, M. P., … Plaghki, L. (2011). Asymptomatic small fiber neuropathy in diabetes mellitus: Investigations with intraepidermal nerve fiber density, quantitative sensory testing and laser-evoked potentials. Journal of Neurology, 258, 1852-1864. https://doi.org/10.1007/s00415-011-6031-z
Rolke, R., Magerl, W., Campbell, K. A., Schalber, C., Caspari, S., Birklein, F., & Treede, R. D. (2006). Quantitative sensory testing: A comprehensive protocol for clinical trials. European Journal of Pain, 10, 77-88. https://doi.org/10.1016/j.ejpain.2005.02.003
Schepers, R. J., & Ringkamp, M. (2010). Thermoreceptors and thermosensitive afferents. Neuroscience and Biobehavioral Reviews, 34, 177-184. https://doi.org/10.1016/j.neubiorev.2009.10.003
Shun, C. T., Chang, Y. C., Wu, H. P., Hsieh, S. C., Lin, W. M., Lin, Y. H., … Hsieh, S. T. (2004). Skin denervation in type 2 diabetes: Correlations with diabetic duration and functional impairments. Brain, 127, 1593-1605. https://doi.org/10.1093/brain/awh180
Sorensen, L., Molyneaux, L., & Yue, D. K. (2006). The relationship among pain, sensory loss, and small nerve fibers in diabetes. Diabetes Care, 29, 883-887. https://doi.org/10.2337/diacare.29.04.06.dc05-2180
Terkelsen, A. J., Karlsson, P., Lauria, G., Freeman, R., Finnerup, N. B., & Jensen, T. S. (2017). The diagnostic challenge of small fibre neuropathy: Clinical presentations, evaluations, and causes. The Lancet Neurology, 16, 934-944. https://doi.org/10.1016/S1474-4422(17)30329-0
Tesfaye, S., Boulton, A. J., Dyck, P. J., Freeman, R., Horowitz, M., Kempler, P., … Valensi, P. (2010). Diabetic neuropathies: Update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care, 33, 2285-2293. https://doi.org/10.2337/dc10-1303
Wagenmakers, E.-J., Love, J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part II: Example applications with JASP. Psychonomic Bulletin & Review, 25(1), 58-76. https://doi.org/10.3758/s13423-017-1323-7
Wagenmakers, E. J., Marsman, M., Jamil, T., Ly, A., Verhagen, J., Love, J., … Morey, R. D. (2018). Bayesian inference for psychology. Part I: Theoretical advantages and practical ramifications. Psychonomic Bulletin & Review, 35-57. https://doi.org/10.3758/s13423-017-1343-3
Weyer-Menkhoff, I., Pinter, A., Schlierbach, H., Schänzer, A., & Lötsch, J. (2019). Epidermal expression of human TRPM8, but not of TRPA1 ion channels, is associated with sensory responses to local skin cooling. Pain, 160, 2699-2709. https://doi.org/10.1097/j.pain.0000000000001660
Zhou, L., Kitch, D. W., Evans, S. R., Hauer, P., Raman, S., Ebenezer, G. J., … McArthur, J. C. (2007). Correlates of epidermal nerve fiber densities in HIV-associated distal sensory polyneuropathy. Neurology, 68, 2113-2119. https://doi.org/10.1212/01.wnl.0000264888.87918.a1

Auteurs

Arthur S Courtin (AS)

Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.

Sofia Maldonado Slootjes (S)

Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
Faculté de Médecine et de Médecine Dentaire, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.

Gilles Caty (G)

Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
Faculté des Sciences de la Motricité, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium.
Service de Médecine Physique et Réadaptation, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.

Michel P Hermans (MP)

Faculté de Médecine et de Médecine Dentaire, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
Unité Endocrinologie et Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium.

Léon Plaghki (L)

Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
Faculté des Sciences de la Motricité, Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve, Belgium.

André Mouraux (A)

Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium.
Faculté de Médecine et de Médecine Dentaire, Université Catholique de Louvain (UCLouvain), Brussels, Belgium.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH