Identification of small RNAs during cold acclimation in Arabidopsis thaliana.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
29 Jun 2020
Historique:
received: 26 02 2020
accepted: 22 06 2020
entrez: 1 7 2020
pubmed: 1 7 2020
medline: 23 1 2021
Statut: epublish

Résumé

Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes. We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation. In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.

Sections du résumé

BACKGROUND BACKGROUND
Cold stress causes dynamic changes in gene expression that are partially caused by small non-coding RNAs since they regulate protein coding transcripts and act in epigenetic gene silencing pathways. Thus, a detailed analysis of transcriptional changes of small RNAs (sRNAs) belonging to all known sRNA classes such as microRNAs (miRNA) and small interfering RNA (siRNAs) in response to cold contributes to an understanding of cold-related transcriptome changes.
RESULT RESULTS
We subjected A. thaliana plants to cold acclimation conditions (4 °C) and analyzed the sRNA transcriptomes after 3 h, 6 h and 2 d. We found 93 cold responsive differentially expressed miRNAs and only 14 of these were previously shown to be cold responsive. We performed miRNA target prediction for all differentially expressed miRNAs and a GO analysis revealed the overrepresentation of miRNA-targeted transcripts that code for proteins acting in transcriptional regulation. We also identified a large number of differentially expressed cis- and trans-nat-siRNAs, as well as sRNAs that are derived from long non-coding RNAs. By combining the results of sRNA and mRNA profiling with miRNA target predictions and publicly available information on transcription factors, we reconstructed a cold-specific, miRNA and transcription factor dependent gene regulatory network. We verified the validity of links in the network by testing its ability to predict target gene expression under cold acclimation.
CONCLUSION CONCLUSIONS
In A. thaliana, miRNAs and sRNAs derived from cis- and trans-NAT gene pairs and sRNAs derived from lncRNAs play an important role in regulating gene expression in cold acclimation conditions. This study provides a fundamental database to deepen our knowledge and understanding of regulatory networks in cold acclimation.

Identifiants

pubmed: 32600430
doi: 10.1186/s12870-020-02511-3
pii: 10.1186/s12870-020-02511-3
pmc: PMC7325139
doi:

Substances chimiques

RNA, Plant 0
RNA, Small Untranslated 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

298

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : SFB-TRR175; project C03
Organisme : Deutsche Forschungsgemeinschaft
ID : SFB-TRR175; project D02
Organisme : Deutsche Forschungsgemeinschaft
ID : SFB-TRR175; project C01

Références

Nat Rev Genet. 2014 Jun;15(6):394-408
pubmed: 24805120
PLoS One. 2014 Mar 25;9(3):e91357
pubmed: 24667308
RNA. 2008 May;14(5):836-43
pubmed: 18356539
Nucleic Acids Res. 2009 Oct;37(19):6575-86
pubmed: 19729508
PLoS One. 2015 Mar 20;10(3):e0120100
pubmed: 25793874
Mol Cell. 2011 Sep 16;43(6):904-14
pubmed: 21925379
Planta. 2008 Feb;227(3):539-58
pubmed: 17929052
Dev Cell. 2015 Feb 9;32(3):278-89
pubmed: 25669882
Gene. 2010 Jul 1;459(1-2):39-47
pubmed: 20350593
Cell. 2005 Dec 29;123(7):1279-91
pubmed: 16377568
RNA. 2008 May;14(5):814-21
pubmed: 18367716
Physiol Mol Biol Plants. 2013 Jul;19(3):307-21
pubmed: 24431500
Genome Biol. 2005;6(4):R30
pubmed: 15833117
Mol Plant. 2012 Nov;5(6):1210-6
pubmed: 23024213
Plant Cell. 2002 Aug;14(8):1675-90
pubmed: 12172015
Photosynth Res. 2008 May;96(2):121-43
pubmed: 18273690
Plant J. 2017 May;90(4):654-670
pubmed: 27943457
Philos Trans R Soc Lond B Biol Sci. 2010 Sep 27;365(1554):2973-89
pubmed: 20713397
Cell. 2016 Oct 6;167(2):313-324
pubmed: 27716505
Nucleic Acids Res. 2020 Jan 8;48(D1):D1104-D1113
pubmed: 31701126
Curr Opin Plant Biol. 2015 Oct;27:207-16
pubmed: 26342908
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16160-5
pubmed: 25349421
FEBS Lett. 2005 Oct 31;579(26):5923-31
pubmed: 16144699
Nature. 2009 Dec 10;462(7274):799-802
pubmed: 20010688
Biochemistry (Mosc). 2017 Oct;82(10):1103-1117
pubmed: 29037131
Curr Genomics. 2011 Aug;12(5):307-21
pubmed: 21874119
Curr Genomics. 2015 Feb;16(1):23-31
pubmed: 25937811
Plant Cell Environ. 2011 Jun;34(6):1031-1042
pubmed: 21388419
Biosci Biotechnol Biochem. 2010;74(7):1435-40
pubmed: 20622450
Plant Physiol Biochem. 2014 Nov;84:105-114
pubmed: 25261853
BMC Mol Biol. 2008 Jan 14;9:6
pubmed: 18194570
DNA Res. 2015 Jun;22(3):233-43
pubmed: 25922535
Biochim Biophys Acta. 2012 Feb;1819(2):137-48
pubmed: 21605713
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10
pubmed: 27137889
Plant Physiol. 2010 Jun;153(2):716-27
pubmed: 20395451
Plant J. 2014 Dec;80(5):848-61
pubmed: 25256571
Curr Biol. 2017 Oct 9;27(19):2940-2950.e4
pubmed: 28943086
BMC Plant Biol. 2014 May 19;14:136
pubmed: 24885185
Plant Sci. 2019 Aug;285:68-78
pubmed: 31203895
PLoS One. 2018 Feb 28;13(2):e0193517
pubmed: 29489914
Plant Cell Physiol. 2012 Jul;53(7):1283-94
pubmed: 22619471
Plant Cell. 2007 Mar;19(3):926-42
pubmed: 17400893
Nucleic Acids Res. 2017 May 19;45(9):5142-5152
pubmed: 28335016
Plant Physiol. 2008 Aug;147(4):1710-22
pubmed: 18583533
Front Plant Sci. 2017 Apr 12;8:565
pubmed: 28446918
Essays Biochem. 2013;54:91-101
pubmed: 23829529
Plant Cell. 2012 Jun;24(6):2578-95
pubmed: 22706288
Plant Cell. 2003 Nov;15(11):2730-41
pubmed: 14555699
BMC Plant Biol. 2008 Jan 29;8:13
pubmed: 18230142
Plant Cell. 2004 Aug;16(8):2001-19
pubmed: 15258262
Front Plant Sci. 2016 Dec 22;7:1938
pubmed: 28066490
Front Plant Sci. 2018 May 03;9:600
pubmed: 29774045
Front Plant Sci. 2014 Oct 29;5:583
pubmed: 25400649
Development. 2006 Sep;133(18):3539-47
pubmed: 16914499
Genes Dev. 2003 Jan 1;17(1):49-63
pubmed: 12514099
Plant Physiol. 2016 Dec;172(4):2491-2503
pubmed: 27744298
Plant Physiol. 2015 Feb;167(2):337-50
pubmed: 25502410
Plant J. 2015 Oct;84(1):169-87
pubmed: 26312768
Mol Biol Evol. 2015 Jul;32(7):1767-73
pubmed: 25750178
FEBS Lett. 2003 Jul 17;547(1-3):125-30
pubmed: 12860399
Biomolecules. 2019 May 10;9(5):
pubmed: 31083391
Nat Genet. 2007 Aug;39(8):1033-7
pubmed: 17643101
Genes (Basel). 2012 Oct 10;3(4):603-14
pubmed: 24705078
RNA. 2018 Aug;24(8):1093-1105
pubmed: 29844106
Genes Dev. 2004 Oct 1;18(19):2368-79
pubmed: 15466488
Plant Physiol. 2002 Dec;130(4):2129-41
pubmed: 12481097
Front Plant Sci. 2017 Sep 21;8:1643
pubmed: 28983309
Plant Cell Environ. 2018 Jan;41(1):1-15
pubmed: 28346818
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11511-6
pubmed: 15272084
Neural Regen Res. 2020 Feb;15(2):212-221
pubmed: 31552886
BMC Genomics. 2017 Feb 28;18(1):212
pubmed: 28241738
Front Plant Sci. 2018 Apr 24;9:521
pubmed: 29740462
Plant J. 2008 Nov;56(4):653-64
pubmed: 18643972
Nat Genet. 2006 Jun;38 Suppl:S31-6
pubmed: 16736022
PLoS Genet. 2014 Aug 07;10(8):e1004519
pubmed: 25101599
Front Plant Sci. 2015 Sep 17;6:741
pubmed: 26442054
Gene. 2015 Jan 25;555(2):186-93
pubmed: 25445265
Methods Mol Biol. 2010;639:39-55
pubmed: 20387039
Sci China Life Sci. 2018 Feb;61(2):155-161
pubmed: 29170889
Plant J. 2006 Apr;46(2):243-59
pubmed: 16623887
Front Plant Sci. 2014 Oct 28;5:586
pubmed: 25389431
Curr Protoc Mol Biol. 2011 Jul;Chapter 15:Unit 15.10
pubmed: 21732315
Mol Cell. 2004 Oct 8;16(1):69-79
pubmed: 15469823
Genome Biol. 2017 Jun 27;18(1):124
pubmed: 28655328
Plant Physiol. 2004 Jul;135(3):1674-84
pubmed: 15247404
Trends Genet. 2012 Dec;28(12):616-23
pubmed: 23040327
Genome Biol. 2012;13(3):R20
pubmed: 22439910
Plant Cell. 2004 Mar;16(3):596-615
pubmed: 14973164
Int J Mol Sci. 2013 Apr 08;14(4):7617-41
pubmed: 23567274
J Exp Bot. 2010;61(1):165-77
pubmed: 19815687
Genet Mol Biol. 2012 Dec;35(4 (suppl)):1069-77
pubmed: 23412556
Front Plant Sci. 2016 Oct 18;7:1545
pubmed: 27803706
Plant J. 2007 Mar;49(6):1091-107
pubmed: 17319848
Bioinformatics. 2012 Jul 1;28(13):1805-6
pubmed: 22543366
Plant Physiol. 2006 Mar;140(3):818-29
pubmed: 16524982
New Phytol. 2017 Jul;215(2):711-724
pubmed: 28499073
Plant Physiol. 2009 Dec;151(4):2120-32
pubmed: 19854858
BMC Genomics. 2017 Jul 17;18(1):533
pubmed: 28716048
Nucleic Acids Res. 2018 Jul 2;46(W1):W49-W54
pubmed: 29718424
Mol Plant. 2013 May;6(3):704-15
pubmed: 23505223
Plant Cell Environ. 2006 May;29(5):746-53
pubmed: 17087459
BMC Plant Biol. 2013 Dec 11;13:210
pubmed: 24330668
Protein Sci. 2000 Aug;9(8):1439-54
pubmed: 10975566
Plant Physiol. 1998 Sep;118(1):1-8
pubmed: 9733520
Plant Cell. 2006 May;18(5):1292-309
pubmed: 16617101
Nature. 1999 Dec 2;402(6761 Suppl):C47-52
pubmed: 10591225
Plant J. 2017 Feb;89(4):789-804
pubmed: 27862469
Physiol Mol Biol Plants. 2008 Apr;14(1-2):69-79
pubmed: 23572874
Mol Plant. 2015 Aug;8(8):1153-64
pubmed: 25983207
Genome Res. 2014 Mar;24(3):444-53
pubmed: 24402519
Plant Cell. 2005 Nov;17(11):3155-75
pubmed: 16214899
BMC Genomics. 2012 Mar 06;13:83
pubmed: 22394504
Genes (Basel). 2017 Aug 07;8(8):
pubmed: 28783101
Plant J. 1999 Feb;17(3):301-8
pubmed: 10097388
Nucleic Acids Res. 2011 Jan;39(Database issue):D1118-22
pubmed: 21059685
Plant Cell Rep. 2007 Aug;26(8):1373-82
pubmed: 17530257
Mol Cell. 2016 Jan 21;61(2):222-35
pubmed: 26711010
Plant J. 2017 Apr;90(1):133-146
pubmed: 28106309
Methods. 2001 Dec;25(4):402-8
pubmed: 11846609
Trends Plant Sci. 2007 Jan;12(1):29-36
pubmed: 17161643
Int J Mol Sci. 2015 Oct 15;16(10):24532-54
pubmed: 26501263
New Phytol. 2016 Aug;211(3):912-25
pubmed: 27125220
Microbiol Mol Biol Rev. 1998 Dec;62(4):1415-34
pubmed: 9841677
Plant Mol Biol. 2017 Jan;93(1-2):35-48
pubmed: 27681945
Plant Physiol. 2018 Feb;176(2):1694-1708
pubmed: 29133375
BMC Plant Biol. 2014 Oct 21;14:271
pubmed: 25330732
Nat Rev Mol Cell Biol. 2018 Mar;19(3):143-157
pubmed: 29138516
RNA Biol. 2013;10(9):1511-9
pubmed: 24184847
Toxics. 2019 Mar 25;7(1):
pubmed: 30934574
PLoS One. 2017 May 1;12(5):e0175924
pubmed: 28459812
RNA. 2009 Dec;15(12):2147-60
pubmed: 19850906
Dev Cell. 2013 Jan 28;24(2):125-32
pubmed: 23333352
Nature. 2014 Apr 17;508(7496):411-5
pubmed: 24670663
RNA. 2010 Apr;16(4):673-95
pubmed: 20181738
J Exp Bot. 2012 Jun;63(10):3523-43
pubmed: 22467407
Mol Cell Biol. 2000 Aug;20(16):5879-87
pubmed: 10913171
Front Plant Sci. 2013 Jun 20;4:197
pubmed: 23802004
Plant Cell Environ. 2012 Mar;35(3):502-12
pubmed: 22017483
J Biol Chem. 2008 Jun 6;283(23):15932-45
pubmed: 18408011
RNA. 2013 Jun;19(6):740-51
pubmed: 23610128
BMC Plant Biol. 2017 Dec 21;17(1):261
pubmed: 29268705
Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045
pubmed: 27924042
Biol Direct. 2013 Feb 12;8:6
pubmed: 23402430
DNA Res. 2013 Apr;20(2):109-25
pubmed: 23266877

Auteurs

Bhavika Tiwari (B)

Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.

Kristin Habermann (K)

Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.

M Asif Arif (MA)

Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.

Heinrich Lukas Weil (HL)

Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany.

Antoni Garcia-Molina (A)

Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.

Tatjana Kleine (T)

Department of Biology I, Plant Molecular Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.

Timo Mühlhaus (T)

Computational Systems Biology, Technische Universität Kaiserslautern, Paul-Ehrlich-Straße 23, 67663, Kaiserslautern, Germany.

Wolfgang Frank (W)

Department of Biology I, Plant Molecular Cell Biology, Ludwig-Maximilians-Universität München, LMU Biocenter, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany. wolfgang.frank@lmu.de.

Articles similaires

Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family
Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum

Classifications MeSH