Left ventricle automatic pacing threshold management in CRT systems: A comprehensive review.
automatic threshold management
left ventricle pacing
Journal
Journal of cardiovascular electrophysiology
ISSN: 1540-8167
Titre abrégé: J Cardiovasc Electrophysiol
Pays: United States
ID NLM: 9010756
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
15
04
2020
revised:
09
06
2020
accepted:
17
06
2020
pubmed:
24
6
2020
medline:
15
7
2021
entrez:
24
6
2020
Statut:
ppublish
Résumé
Modern cardiac resynchronization therapy (CRT) device-based threshold detection enables capture management and voltage output adjusting to combine consistent left ventricular (LV) pacing with acceptable battery drainage. The current technologies available for LV capture automatic confirmation in most cases require the evoked response, as well as "LV pace to right ventricular sense" algorithms. The LV pacing percentage counter may overestimate the CRT delivery which may be reduced due to pacing inhibition (by sensed LV activation) or inadequate capture due to subthreshold current or pacing into refractory tissue. Moreover, the LV threshold at implant and its behavior over time (as a marker of electrical viability) and the ineffective CRT issues (subthreshold stimulation or concealed loss of capture) are discussed. The purpose of the present review is to explore these new challenges regarding LV pacing automatic management.
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
2489-2498Informations de copyright
© 2020 Wiley Periodicals LLC.
Références
Brignole M, Auricchio A, Baron-Esquivias G, et al. ESC guidelines on cardiac pacing and cardiac resynchronization therapy. The task force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34(2013):2281-2329.
Sperzel J, Neuzner J, Schwarz T, Qingsheng Z, Konig A, Kay N. Reduction of pacing output coupling capacitance for sensing the evoked response. Pacing Clin Electrophysiol. 2001;24:1377-1382.
Clarke M, Liu B, Schuller H, et al. Automatic adjustment of pacemaker stimulation output correlated with continuously monitored capture thresholds: a multicenter study. Pacing Clin Electrophysiol. 1998;21:1567-1575.
O'Hara G, Kirstensson B, Lundstrom R, Kempen K, Soucy B, Lynn T. First clinical experience with a new pacemaker with ventricular capture management (Abstract). Pacing Clin Electrophysiol. 1998;21:892.
Crossley G, Mead H, Kleckner K, et al. Automated left ventricular capture management. Pacing Clin Electrophysiol. 2007;30(10):1190-1200.
Steinhaus D, Waks JW, Collins R, Kleckner K, Krame D, Zimetbaum P. Effect of smaller left ventricular capture threshold safety margins to improve device longevity in recipients of cardiac resynchronization-defibrillation therapy. Am J Cardiol. 2015;116:85e-87e.
Boriani G, Braunschweig F, Deharo JC, Leyva F, Lubinski A, Lazzaro C. Impact of extending device longevity on the long-term costs of implantable cardioverter-defibrillator therapy: a modelling study with a 15-year time horizon. Europace. 2013;15:1453e-1462e.
Sanders GD, Hlatky MA, Owens DK. Cost-effectiveness of implantable cardioverter-defibrillators. N Engl J Med. 2005;353:1471e-1480e.
Murgatroyd F, Helmling E, Lemke B, et al. Manual vs. automatic capture management in implantable cardioverter defibrillators and cardiac resynchronization therapy defibrillators. Europace. 2010;12:811-816.
Dell'Era G, De Vecchi F, Prenna E, et al. Feasibility of cathodic-anodal left ventricular stimulation for alternative multi-site pacing. Pacing Clin Electrophysiol. 2018;6:597-602.
Thakral A, Stein LH, Shenai M, Gramatikov BI, Thakor NV. Effects of anodal vs. cathodal pacing on the mechanical performance of the isolated rabbit heart. J Appl Physiol. 2000;89:1159-1164.
Mower MM, Hepp D, Hall R. Comparison of chronic biphasic pacing versus cathodal pacing of the right ventricle on left ventricular function in sheep after myocardial infarction. Ann Noninvasive Electrocardiol. 2011;16:111-116.
Biffi M, Bertini M, Ziacchi M, Boriani G. Left ventricular pacing by automatic capture verification. Europace. 2007;9:1177-1181.
Sperzel J, Nowak B, Himmrich E, et al. Acute performance evaluation of a new ventricular auation therapy Berruezo tomatic capture algorithm. Europace. 2006;8:65-69.
Kamath GS, Cotiga D, Koneru JN, et al. The utility of 12-lead Holter monitoring in patients with permanent atrial fibrillation for the identification of nonresponders after cardiac resynchronization therapy. J Am Coll Cardiol. 2009;53:1050-1055.
Occhetta E, Dell′Era G, Giubertoni A, et al. Occurrence of simultaneous cathodal-anodal capture with left ventricular quadripolar leads for cardiac resynchronization therapy: an electrocardiogram evaluation. Europace. 2017;4:596-601.
Sperzel J, Kennergren C, Biffi M, Smith M, Knops M, Gill J. Clinical performance of a ventricular automatic capture verification algorithm. Pacing Clin Electrophysiol. 2005;28:933-937.
Hernández-Madrid A, Facchin D, Nicholson Klepfer R, et al. Device pacing diagnostics overestimate effective cardiac resynchronization therapy pacing results of the hOLter for Efficacy analysis of CRT (OLÉ CRT) study. Heart Rhythm. 2017 14, 541-447.
Ghosh S, Stadler RW, Mittal S. Automated detection of effective left-ventricular pacing: going beyond percentage pacing counters. Europace. 2015;17:1555-1562.
Van Bommel RJ, Bax JJ, Abraham WT, et al. Characteristics of heart failure patients associated with good and poor response to cardiac resynchronization therapy: A PROSPECT (Predictors of Response to CRT) subanalysis. Eur Heart J. 2009;30:2470-2477.
Goldenberg I, Moss AJ, Hall WJ, et al. Predictors of response to cardiac resynchronization therapy in the multicenter automatic defibrillator implantation trial with cardiac resynchronization therapy (MADIT-CRT). Circulation. 2011;124:1527-1536.
Pires L, Mcnitt S, Solomon S, Goldenberg I, Zareba W, Moss AJ. Left ventricular pacing threshold and outcome in MADIT-CRT. J Cardiovasc Electrophysiol. 2014;25:1005-1011.
Hsu JC, Solomon SD, Bourgoun M, et al. Predictors of super-response to cardiac resynchronization therapy and associated improvement in clinical outcome. The MADIT-CRT (Multicenter Automatic Defibrillator Implantation Trial with Cardiac Resynchronization Therapy) study. J Am Coll Cardiol. 2012;59:2366-2373.
Delgado V, van Bommel RJ, Bertini M, et al. Relative merits of left ventricular dyssynchrony, left ventricular lead position, and myocardial scar to predict long-term survival of ischemic heart failure patients undergoing cardiac resynchronization therapy. Circulation. 2011;123:70-78
Burri H, Gerritse B, Davenport L, Demas M, Sticherling C. Fluctuation of left ventricular thresholds and required safety margin for left ventricular pacing with cardiac resynchronization therapy. Europace. 2009;11:931-936.
Ypenburg C, Van Bommel RJ, Delgado V, et al. Optimal left ventricular lead position predicts response and prognosis to cardiac resynchronization therapy. J Am Coll Cardiol. 2008;52:1402-1409.
Ansalone G, Giannantoni P, Ricci R, Trambaiolo P, Fedele F, Santini M. Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol. 2002;39:489-499.
Adelstein EC, Saba S. Scar burden by myocardial perfusion imaging predicts echocardiographic response to cardiac resynchronization therapy in ischemic cardiomyopathy. Am Heart J. 2007;153:105-112.
Kaplan BA, Kaplan AJ, Weiner S, Jones PW, Seth M, Christman SA. Heart failure decompensation and all-cause mortality in relation to percent biventricular pacing in patients with heart failure. J Am Coll Cardiol. 2009;53:355-360.