Catechol-O-methyltransferase rs4680 and rs4818 haplotype association with treatment response to olanzapine in patients with schizophrenia.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 06 2020
22 06 2020
Historique:
received:
19
02
2020
accepted:
05
05
2020
entrez:
24
6
2020
pubmed:
24
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Antipsychotic drugs target primarily dopaminergic system which makes catechol-O-methyltransferase (COMT) an interesting target in studies searching for treatment response predictors in schizophrenia. The study assessed the association of the COMT rs4680 and rs4818 polymorphisms with therapeutic response to olanzapine, risperidone, clozapine or other antipsychotic medication after 8 weeks of monotherapy in patients with schizophrenia. 521 Caucasian patients with schizophrenia received a monotherapy with olanzapine (10-20 mg/day; N = 190), risperidone (3-6 mg/day; N = 99), or clozapine (100-500 mg/day; N = 102). The fourth group (N = 130) consisted of patients receiving haloperidol (3-15 mg/day), fluphenazine (4-25 mg/day) or quetiapine (50-800 mg/day). Treatment response was defined as a 50% reduction from the baseline positive and negative syndrome scale (PANSS) total and subscale scores, but also as an observed percentage reduction from the initial PANSS
Identifiants
pubmed: 32572118
doi: 10.1038/s41598-020-67351-5
pii: 10.1038/s41598-020-67351-5
pmc: PMC7308339
doi:
Substances chimiques
Antipsychotic Agents
0
COMT protein, human
EC 2.1.1.6
Catechol O-Methyltransferase
EC 2.1.1.6
Olanzapine
N7U69T4SZR
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
10049Références
Huang, E. et al. Catechol-O-methyltransferase Val158Met polymorphism and clinical response to antipsychotic treatment in schizophrenia and schizo-affective disorder patients: a meta-analysis. Int. J. Neuropsychopharmacol. 19, pyv132 (2016).
Lotta, T. et al. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 34, 4202–4210 (1995).
doi: 10.1021/bi00013a008
Scanlon, P. D., Raymond, F. A. & Weinshilboum, R. M. Catechol-O-methyltransferase: thermolabile enzyme in erythrocytes of subjects homozygous for allele for low activity. Science 203, 63–65 (1979).
doi: 10.1126/science.758679
Tunbridge, E. M. et al. Which dopamine polymorphisms are functional? Systematic review and meta-analysis of COMT, DAT, DBH, DDC, DRD1-5, MAOA, MAOB, TH, VMAT1, and VMAT2. Biol. Psychiatry 86, 608–620 (2019).
doi: 10.1016/j.biopsych.2019.05.014
Roussos, P., Giakoumaki, S. G., Pavlakis, S. & Bitsios, P. Planning, decision-making and the COMT rs4818 polymorphism in healthy males. Neuropsychologia 46, 757–763 (2008).
doi: 10.1016/j.neuropsychologia.2007.10.009
Yoshida, K. & Müller, D. J. Pharmacogenetics of antipsychotic drug treatment: update and clinical implications. Mol. Neuropsychiatry 1–26, doi: 10.1159/000492332 (2018).
Sagud, M. et al. Haplotypic and Genotypic Association of Catechol-O-Methyltransferase rs4680 and rs4818 Polymorphisms and Treatment Resistance in Schizophrenia. Front. Pharmacol. 9, 705 (2018).
doi: 10.3389/fphar.2018.00705
Terzic, T., Kastelic, M., Dolžan, V. & Plesničar, B. K. Genetic polymorphisms in dopaminergic system and treatment-resistant schizophrenia. Psychiatr. Danub. 28, 127–131 (2016).
pubmed: 27287786
Zivkovic, M. et al. The lack of association between COMT rs4680 polymorphism and symptomatic remission to olanzapine monotherapy in male schizophrenic patients: a longitudinal study. Psychiatry Res. 279, 389–390 (2019).
doi: 10.1016/j.psychres.2019.04.028
Sagud, M. et al. Catechol-O-methyl transferase and schizophrenia. Psychiatr. Danub. 22, 270–274 (2010).
pubmed: 20562760
Gupta, M. et al. Association studies of catechol-O-methyltransferase (COMT) gene with schizophrenia and response to antipsychotic treatment. Pharmacogenomics 10, 385–397 (2009).
doi: 10.2217/14622416.10.3.385
Illi, A. et al. Interaction between angiotensin-converting enzyme and catechol-O-methyltranferase genotypes in schizophrenics with poor response to conventional neuroleptics. Eur. Neuropsychopharmacol. 13, 147–151 (2003).
doi: 10.1016/S0924-977X(02)00176-1
Illi, A. et al. Catechol-O-methyltransferase val108/158met genotype and response to antipsychotic medication in schizophrenia. Hum. Psychopharmacol. 22, 211–215 (2007).
doi: 10.1002/hup.841
Inada, T., Nakamura, A. & Iijima, Y. Relationship between catechol-O-methyltransferase polymorphism and treatment-resistant schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 120B, 35–39 (2003).
Tybura, P. et al. Pharmacogenetics of adverse events in schizophrenia treatment: Comparison study of ziprasidone, olanzapine and perazine. Psychiatry Res. 219, 261–267 (2014).
doi: 10.1016/j.psychres.2014.05.039
Vehof, J. et al. Clinical response to antipsychotic drug treatment: association study of polymorphisms in six candidate genes. Eur. Neuropsychopharmacol. 22, 625–631 (2012).
doi: 10.1016/j.euroneuro.2012.01.006
Kocabas, N. A. et al. The impact of catechol-O-methyltransferase SNPs and haplotypes on treatment response phenotypes in major depressive disorder: a case–control association study. Int. Clin. Psychopharmacol. 25, 218–227 (2010).
doi: 10.1097/YIC.0b013e328338b884
Andreasen, N. C. et al. Remission in schizophrenia: proposed criteria and rationale for consensus. Am. J. Psychiat. 162, 441–449 (2005).
doi: 10.1176/appi.ajp.162.3.441
Leucht, S., Davis, J. M., Engel, R. R., Kissling, W. & Kane, J. M. Definitions of response and remission in schizophrenia: recommendations for their use and their presentation. Acta Psychiatr. Scand. 119, 7–14 (2009).
doi: 10.1111/j.1600-0447.2008.01308.x
Molero, P., Ortuño, F., Zalacain, M. & Patiño-García, A. Clinical involvement of catechol-O-methyltransferase polymorphisms in schizophrenia spectrum disorders: influence on the severity of psychotic symptoms and on the response to neuroleptic treatment. Pharmacogenomics J. 7, 418–426 (2007).
doi: 10.1038/sj.tpj.6500441
Stefanis, N. C. et al. Variation in catechol-o-methyltransferase val158 met genotype associated with schizotypy but not cognition: a population study in 543 young men. Biol. Psychiatry 56, 510–515 (2004).
doi: 10.1016/j.biopsych.2004.06.038
Bertolino, A. et al. COMT Val158Met polymorphism predicts negative symptoms response to treatment with olanzapine in schizophrenia. Schizophr. Res. 95, 253–255 (2007).
doi: 10.1016/j.schres.2007.06.014
Anttila, S. et al. Interaction between NOTCH4 and catechol-O-methyltransferase genotypes in schizophrenia patients with poor response to typical neuroleptics. Pharmacogenetics 14, 303–307 (2004).
doi: 10.1097/00008571-200405000-00005
Fijal, B. A. et al. Candidate-gene association analysis of response to risperidone in African American and white patients with schizophrenia. Pharmacogenomics J. 9, 311–318 (2009).
doi: 10.1038/tpj.2009.24
Weickert, T. W. et al. Catechol-O-methyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol. Psychiatry 56, 677–682 (2004).
doi: 10.1016/j.biopsych.2004.08.012
Woodward, N. D., Jayathilake, K. & Meltzer, H. Y. COMT val108/158met genotype, cognitive function, and cognitive improvement with clozapine in schizophrenia. Schizophr. Res. 90, 86–96 (2007).
doi: 10.1016/j.schres.2006.10.002
Zhao, Q. Z. et al. Association between a COMT polymorphism and clinical response to risperidone treatment: a pharmacogenetic study. Psychiatr. Genet. 22, 298–299 (2012).
doi: 10.1097/YPG.0b013e328358629a
Kaneko, H. et al. COMT Val 108/158 Met polymorphism and treatment response to aripiprazole in patients with acute schizophrenia. Neuropsychiatr. Dis. Treat. 14, 1657–1663 (2018).
doi: 10.2147/NDT.S164647
Bosia, M. et al. COMT Val158Met and 5-HT1A-R –1019 C/G polymorphisms: effects on the negative symptom response to clozapine. Pharmacogenomics 16, 35–44 (2015).
doi: 10.2217/pgs.14.150
Escamilla, R. et al. Association study between COMT, DRD2, and DRD3 gene variants and antipsychotic treatment response in Mexican patients with schizophrenia. Neuropsychiatr. Dis. Treat. 14, 2981–2987 (2018).
doi: 10.2147/NDT.S176455
Gong, Y. et al. Polymorphisms in microRNA target sites influence susceptibility to schizophrenia by altering the binding of miRNAs to their targets. Eur. Neuropsychopharmacol. 23, 1182–1189 (2013).
doi: 10.1016/j.euroneuro.2012.12.002
Nackley, A. G. et al. Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314, 1930–1933 (2006).
doi: 10.1126/science.1131262
Rajagopal, V. M., Rajkumar, A. P., Jacob, K. S. & Jacob, M. Gene-gene interaction between DRD4 and COMT modulates clinical response to clozapine in treatment-resistant schizophrenia. Pharmacogenet. Genomics 28, 31–35 (2018).
doi: 10.1097/FPC.0000000000000314
Johnson, E. C. et al. No evidence that schizophrenia candidate genes are more associated with schizophrenia than non-candidate genes. Biol Psychiatry. 82, 702–708 (2017).
doi: 10.1016/j.biopsych.2017.06.033
Sherva, R. & Farrer, L. A. Power and pitfalls of the genome-wide association study approach to identify genes for Alzheimer’s disease. Curr. Psychiatry. Rep. 13, 138–146 (2011).
doi: 10.1007/s11920-011-0184-4
Brandl, E. J., Kennedy, J. L. & Müller, D. J. Pharmacogenetics of antipsychotics. Can. J. Psychiatry 59, 76–88 (2014).
Nikolac Perkovic, M. et al. Association between the brain-derived neurotrophic factor Val66Met polymorphism and therapeutic response to olanzapine in schizophrenia patients. Psychopharmacology 231, 3757–3764 (2014).
First, M. B., Spitzer, R. L., Williams, J. B. W. & Gibbons, M. Structured clinical interview for DSM-IV-patient edition (SCID-P) (American Psychiatric Press, Washington, DC, 1995).
Kay, S. R., Fisbein, A. & Opler, L. A. The Positive and negative Syndrome Scale (PANSS) for schizophrenia. Schizophr. Bull. 13, 261–276 (1987).
doi: 10.1093/schbul/13.2.261
Miller, S. A., Dykes, D. D. & Polesky, H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 (1988).
doi: 10.1093/nar/16.3.1215
Rodriguez, S., Gaunt, T. R. & Day, I. N. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am. J. Epidemiol. 169, 505–514 (2009).
doi: 10.1093/aje/kwn359
Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
doi: 10.1093/bioinformatics/bth457
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 8, 559–575 (2007).
doi: 10.1086/519795
Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).
doi: 10.3758/BF03193146