Occurrence of Antibiotics in Influent and Effluent from 3 Major Wastewater-Treatment Plants in Finland.
Antibiotics
Environmental risk assessment
Metabolites
Multiresidue analyses
Online SPE
Wastewater
Journal
Environmental toxicology and chemistry
ISSN: 1552-8618
Titre abrégé: Environ Toxicol Chem
Pays: United States
ID NLM: 8308958
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
09
04
2020
revised:
22
04
2020
accepted:
12
06
2020
pubmed:
20
6
2020
medline:
15
1
2021
entrez:
20
6
2020
Statut:
ppublish
Résumé
Wastewater-treatment plants (WWTPs) are regarded as one of the main sources of antibiotics in the environment. In the present study, the concentrations of multiple antibiotics and their metabolites belonging to 5 antibiotic classes were determined in 3 major Finnish WWTPs. An online solid phase extraction-liquid chromatography-tandem mass spectrometry method was used for the extraction and analysis of the compounds. The method was fully validated using real and synthetic wastewaters. Seven antibiotics and 3 metabolites were found in the analyzed samples. Sulfonamides were removed most efficiently, whereas macrolides usually showed negative removal efficiency during the treatment, which means that the concentrations for individual antibiotics determined in the effluent samples were higher than in the influent samples. Sulfadiazine was found at concentrations up to 1018 ng/L, which was the highest concentration of any of the detected antibiotics in influent. In the effluent samples, the highest mean concentration was found for trimethoprim (532 ng/L). The measured mass loads of the antibiotics and metabolites to the receiving waters ranged from 2 to 157 mg/d per 1000 population equivalent. The evaluated environmental risk assessment showed that clarithromycin and erythromycin might pose a risk to the environment. The present study further underlines the importance of implementing technology for efficient removal of xenobiotics during wastewater treatment. Environ Toxicol Chem 2020;39:1774-1789. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Substances chimiques
Anti-Bacterial Agents
0
Waste Water
0
Water Pollutants, Chemical
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1774-1789Subventions
Organisme : Kansainvälisen Liikkuvuuden ja Yhteistyön Keskus
Pays : International
Organisme : Maa- ja Vesitekniikan Tuki Ry
ID : 31943
Pays : International
Organisme : Maa- ja Vesitekniikan Tuki Ry
ID : 32890
Pays : International
Organisme : Stiftelsen för Åbo Akademi
Pays : International
Informations de copyright
© 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Références
Aguirre-Martínez GV, Del Valls TA, Martín-Díaz ML. 2013. Early responses measured in the brachyuran crab Carcinus maenas exposed to carbamazepine and novobiocin: Application of a 2-tier approach. Ecotoxicol Environ Saf 97:47-58.
Besha AT, Gebreyohannes AY, Tufa RA, Bekele DN, Curcio E, Giorno L. 2017. Removal of emerging micropollutants by activated sludge process and membrane bioreactors and the effects of micropollutants on membrane fouling: A review. J Environ Chem Eng 5:2395-2414.
Besse JP, Kausch-Barreto C, Garric J. 2008. Exposure assessment of pharmaceuticals and their metabolites in the aquatic environment: Application to the French situation and preliminary prioritization. Hum Ecol Risk Assess 14:665-695.
Birošová L, Mackulak T, Bodík I, Ryba J, Škubák J, Grabic R. 2014. Pilot study of seasonal occurrence and distribution of antibiotics and drug resistant bacteria in wastewater treatment plants in Slovakia. Sci Total Environ 15:440-444.
Björlenius B, Ripszám M, Haglund P, Lindberg RH, Tysklind M, Fick J. 2018. Pharmaceutical residues are widespread in Baltic Sea coastal and offshore waters-Screening for pharmaceuticals and modelling of environmental concentrations of carbamazepine. Sci Total Environ 633:1496-1509.
Blaise C, Gagné F, Eullafroy P, Férard JF. 2006. Ecotoxicity of selected pharmaceuticals of urban origin discharged to the Saint-Lawrence River (Québec, Canada): A review. Braz J Aquat Sci Technol 10:29-51.
Brumovský M, Bečanová J, Kohoutek J, Borghini M, Nizzetto N. 2017. Contaminants of emerging concern in the open sea waters of the western Mediterranean. Environ Pollut 229:976-983.
Bundschuh M, Hahn T, Ehrlich B, Höltge S, Kreuzig R, Schulz R. 2015. Acute toxicity and environmental risks of five veterinary pharmaceuticals for aquatic macroinvertebrates. Bull Environ Contam Toxicol 96:139-143.
Cha JM, Yang S, Carlson KH. 2006. Trace determination of β-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry. J Chromatogr A 1115:46-57.
Choi K, Kim Y, Jung J, Kim MH, Kim CS, Kim NH, Park J. 2008. Occurrences and ecological risks of roxithromycin, trimethoprim, and chloramphenicol in the Han River, Korea. Environ Toxicol Chem 27:711-719.
Commission of the European Communities. 2003. Technical guidance document in support of commission directive 93/67/EEC on risk assessment for new notified substances. Part II, Environmental Risk Assessment. Office for official publication of the European Communities, Luxembourg. [cited 2020 May 20]. Available from: https://echa.europa.eu/documents/10162/16960216/tgdpart2_2ed_en.pdf
Costanzo SD, Murby J, Bates J. 2005. Ecosystem response to antibiotics entering the aquatic environment. Mar Pollut Bull 51:218-223.
Davis BD. 1943. The binding of sulfonamide drugs by plasma proteins. A factor in determining the distribution of drugs in the body. J Clin Invest 22:753-762.
Dinh QT, Moreau-Guigon E, Labadie P, Alliot F, Teil MJ, Blanchard M, Eurin J, Chevreuil M. 2017. Fate of antibiotics from hospital and domestic sources in a sewage network. Sci Total Environ 575:758-766.
DrugBank 4.3. 2015. [cited 2016 September 21]. Available from: http://www.drugbank.ca/
European Commission. 2015. Commission Implementing Decision (EU) 2015/495 of 20 March 2015 establishing a watch list of substances for Union-wide monitoring in the field of water policy pursuant to Directive 2008/105/EC of the European Parliament and of the Council. Official J Eur Union L78:40-42. [cited 2019 November 11]. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=uriserv:OJ.L_.2015.078.01.0040.01.ENG
Faleye AC, Adegoke AA, Ramluckan K, Fick J, Bux F, Stenström TA. 2019. Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa. Sci Total Environ 678:10-20.
Fimea. n.d. Fimean uudistamat määräys 4/2013 Lääketurvatoiminta ja ohje 2/2013 Lääkkeiden haittavaikutusten ilmoittaminen. [cited 2019 November 11]. Available from: http://www.fimea.fi/-/fimean-uudistamat-maarays-4-2013-laaketurvatoiminta-ja-ohje-2-2013-laakkeiden-haittavaikutusten-ilmoittaminen
Göbel A, Thomsen A, McArdell CS, Joss A, Giger W. 2005. Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environ Sci Technol 39:3981-3989.
Golovko O, Kumar V, Fedorova G, Randak T, Grabic R. 2014. Seasonal changes in antibiotics, antidepressants/psychiatric drugs, antihistamines and lipid regulators in a wastewater treatment plant. Chemosphere 111:418-426.
Grinten EVD, Pikkemaat MG, Brandhof EJVD, Stroomberg GJ, Kraak MHS. 2010. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere 80:1-6.
Guerra P, Kim M, Shah A, Alaee M, Smyth SA. 2014. Occurrence and fate of antibiotic, analgesic/antiinflammatory, and antifungal compounds in five wastewater treatment processes. Sci Total Environ 473-474:235-243.
Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. 2014. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio 5:e01918-14.
Hajj-Mohamad M, Aboulfadl K, Darwano H, Madoux-Humery AS, Guérineau H, Sauvé S, Prévost M, Dorner S. 2014. Wastewater micropollutants as tracers of sewage contamination: Analysis of combined sewer overflow and stream sediments. Environ Sci Process Impacts 16:2442-2450.
Hampel M, Bron JE, Taggart JB, Leaver MJ. 2014. The antidepressant drug carbamazepine induces differential transcriptome expression in the brain of Atlantic salmon, Salmo salar. Aquat Toxicol 151:114-123.
Hamscher G, Sczesny S, Höper H, Nau H. 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Anal Chem 74:1509-1518.
Hanna N, Sun P, Sun Q, Li X, Yang X, Ji X, Zoub H, Ottosond J, Nilssone LE, Berglunde B, Dyara OJ, Tamhankar AJ, Stålsby Lundborg C. 2018. Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: Its potential for resistance development and ecological and human risk. Environ Int 114:131-142.
He K, Yonetani T, Asada Y, Echigo S, Itoh S. 2019. Simultaneous determination of carbamazepine-N-glucuronide and carbamazepine phase I metabolites in the wastewater by liquid chromatography-tandem mass spectrometry. Microchem J 145:1191-1198.
Heberer T, Feldmann D. 2005. Contribution of effluents from hospitals and private households to the total loads of diclofenac and carbamazepine in municipal sewage effluents-Modeling versus measurements. J Hazard Mater 122:211-218.
Helsinki Region Environmental Services Authority. n.d. Helsinki (FI). [cited 2016 September 21]. Available from: https://vanha.hsy.fi/fi/asukkaalle/Sivut/default.aspx
Hirsch R, Ternes T, Haberer K, Kratz K-L. 1999. Occurrence of antibiotics in the aquatic environment. Sci Total Environ 225:109-118.
Holten-Lützhøft HC, Halling-Sørensen B, Jobrgensen SE. 1999. Algal toxicity of antibacterial agents applied in Danish fish farming. Arch Environ Contam Toxicol 36:1-6.
Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A. 2005. Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87-98.
Keller VDJ, Williams RJ, Lofthouse C, Johnson AC. 2014. Worldwide estimation of river concentrations of any chemical originating from sewage treatment plants using dilution factors. Environ Toxicol Chem 33:447-452.
Kim J, Ishibashi H, Yamauchi R, Ichikawa N, Takao Y, Hirano M, Koga M, Arizono K. 2009. Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34:227-232.
Kim KR, Owens G, Kwon SI, So KH, Lee DB, Ok YS. 2011. Occurrence and environmental fate of veterinary antibiotics in the terrestrial environment. Water Air Soil Pollut 214:163-174.
Klein EY, Van Boeckel TP, Martinez EM, Pant S, Gandra S, Levin SA, Goossens H, Laxminarayan R. 2018. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc Natl Acad Sci USA 115:3463-3470.
Kraemer SA, Ramachandran A, Perron GG. 2019. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 7:180.
Krzeminski P, Tomei MC, Karaolia P, Langenhoff A, Almeida CMR, Felis E, Gritten F, Andersen HR, Fernandes T, Manaia CM, Rizzo L, Fatta-Kassinos D. 2019. Performance of secondary wastewater treatment methods for the removal of contaminants of emerging concern implicated in crop uptake and antibiotic resistance spread: A review. Sci Total Environ 648:1052-1081.
Kümmerer K. 2009. Antibiotics in the aquatic environment-A review-Part I. Chemosphere 75:417-434.
Laitinen J, Nieminen J, Saarinen R, Toivikko S. 2014. Paras käyttökelpoinen tekniikka (BAT) Yhdyskuntien jätevedenpuhdistamot. Suomen Ympäristö 3:72-77.
Leu SY, Chan L, Stenstrom MK. 2012. Toward long solids retention time of activated sludge processes: Benefits in energy saving, effluent quality, and stability. Water Environ Res 84:42-53.
Lindberg RH, Wennberg P, Johansson MI, Tysklind M, Andersson BA. 2005. Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden. Environ Sci Technol 39:3421-3429.
Liu L, Wu W, Zhang J, Lv P, Xu L, Yan Y. 2018. Progress of research on the toxicology of antibiotic pollution in aquatic organisms. Acta Ecol Sin 38:36-41.
Lu G, Li J, Xie Z, Liu C, Guo L, Vernet G, Shen K, Wang J. 2013. Human metapneumovirus associated with community-acquired pneumonia in children in Beijing, China. J Med Virol 85:138-143.
Madureira TV, Rocha MJ, Cruzeiro C, Rodrigues I, Monteiro RA, Rocha E. 2012. The toxicity potential of pharmaceuticals found in the Douro River estuary (Portugal): Evaluation of impacts on fish liver, by histopathology, stereology, vitellogenin and CYP1A immunohistochemistry, after sub-acute exposures of the zebrafish model. Environ Toxicol Pharmacol 34:34-45.
Maggs JL, Pirmohamed M, Kitteringham NR, Park BK. 1997. Characterization of the metabolites of carbamazepine in patient urine by liquid chromatography/mass spectrometry. Drug Metab Dispos 25:275-280.
Marx C, Mühlbauer V, Schubert S, Oertel R, Ahnert M, Krebs P, Kuehn V. 2015. Representative input load of antibiotics to WWTPs: Predictive accuracy and determination of a required sampling quantity. Water Res 76:19-32.
McEvoy GK, ed. 2004. American Hospital Formulary Service (AHFS) Drug Information. American Society of Health-System Pharmacists, Bethesda, MD, pp 62, 85, 225, 282, 379, 402, 420, 448.
Meierjohann A, Kortesmäki E, Brozinski J-M, Kronberg L. 2017. An online SPE LC-MS/MS method for the analysis of antibiotics in environmental water. Environ Sci Pollut Res 24:8692-8699.
Moermond CT, Smit CE. 2016. Derivation of water quality standards for carbamazepine, metoprolol, and metformin and comparison with monitoring data. Environ Toxicol Chem 35:882-888.
Mohapatra S, Huang C-H, Mukherji S, Padhye LP. 2016. Occurrence and fate of pharmaceuticals in WWTPs in India and comparison with a similar study in the United States. Chemosphere 159:526-535.
Ngumba E, Kosunen P, Gachanja A, Tuhkanen T. 2016. A multiresidue analytical method for trace level determination of antibiotics and antiretroviral drugs in wastewater and surface water using SPE-LC-MS/MS and matrix-matched standards. Anal Methods 8:6720-6729.
Nordholm L, Dalgaard L. 1984. Determination of trimethoprim metabolites including conjugates in urine using high-performance liquid chromatography with combined ultraviolet and electrochemical detection. J Chromatogr 305:391-399.
O'Callaghan CH, Muggleton PW. 1967. The action of cephaloridine with cloxacillin or methicillin against beta-lactamase-producing gram-negative bacteria. J Gen Microbiol 48:449-460.
O'Neill J. 2014. Antimicrobial resistance: Tackling a crisis for the health and wealth of nations. Review on Antimicrobial Resistance. UK Government, London, UK. [cited 2016 June 21]. Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf
Papageorgiou M, Kosma C, Lambropoulou D. 2016. Seasonal occurrence, removal, mass loading and environmental risk assessment of 55 pharmaceuticals and personal care products in a municipal wastewater treatment plant in central Greece. Sci Total Environ 543:547-569.
Paxéus N, Bester K, El-Taliawy H. 2016. Temporal variations and trends in loads of commonly used pharmaceuticals to large wastewater treatment plants in Sweden, a case study (Ryaverket). Water Sci Technol 73:3049-3056.
Pruden A, Larsson DGJ, Amézquita A, Collignon P, Brandt KK, Graham DW, Lazorchak JM, Suzuki S, Silley P, Snape JR, Topp E, Zhang T, Zhu YG. 2013. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment. Environ Health Perspect 121:878-885.
Rhee JS, Jeong CB, Kim BM, Lee JS. 2012. P-glycoprotein (P-gp) in the monogonont rotifer, Brachionus koreanus: Molecular characterization and expression in response to pharmaceuticals. Aquat Toxicol 114:104-118.
Ribeiro C, Ribeiro ARL, Tiritan M. 2015. Priority substances and emerging organic pollutants in Portuguese aquatic environment: A review. Rev Environ Contam Toxicol 238:1-44.
Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D. 2013. Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Sci Total Environ 447:345-360.
Rodriguez-Mozaz S, Vaz-Moreira I, Giustina S, Llorca M, Barceló D, Schubert S, Berendonk T, Michael-Kordatou I, Fatta-Kassinos D, Martinez J, Elpers C, Henriques I, Jaeger T, Schwartz T, Paulshus E, O'Sullivan K, Pärnänen K, Virta M, Do T, Walsh F, Manaia C. 2020. Antibiotic residues in final effluents of European wastewater treatment plants and their impact on the aquatic environment. Environ Int 140:105733.
Rongkavilit C, Abdel-Haq N, Ang JY, Asmar BI. 2010. Sulfonamides. In Yaffe SJ, Aranda JV, eds, Neonatal and Pediatric Pharmacology: Therapeutic Principles in Practice, 4th ed. Wolters Kluwer/Lippincott Williams & Wilkins Health, Philadelphia, PA, USA, pp 385-386.
Rossmann J, Gurke R, Renner LD, Oertel R, Kirch W. 2015. Evaluation of the matrix effect of different sample matrices for 33 pharmaceuticals by post-column infusion. J Chromatogr B 1000:84-94.
Sabri NA, Schmitt H, Van der Zaan B, Gerritsen HW, Zuidema T, Rijnaarts HHM, Langenhoff AAM. 2018. Prevalence of antibiotics and antibiotic resistance genes in a wastewater effluent receiving river in The Netherlands. J Environ Chem Eng 8:1022-1045.
Samuelsen OB, Torsvik V, Ervik A. 1992. Long-range changes in oxytetracycline concentration and bacterial resistance toward oxytetracycline in a fish farm sediment after medication. Sci Total Environ 114:25-36.
Spataro F, Ademollo N, Pescatore T, Rauseo J, Patrolecco L. 2019. Antibiotic residues and endocrine disrupting compounds in municipal wastewater treatment plants in Rome, Italy. Microchem J 48:634-642.
SRC PhysProp Database. 2015. [cited 2016 September 21]. Available from: https://esc.syrres.com/fatepointer/search.asp
Tampereen Seudun Keskuspuhdistamo Oy. n.d. Tampere (FI). [cited 2016 September 21]. Available from: https://www.keskuspuhdistamo.fi/
Thiebault T. 2020. Sulfamethoxazole/trimethoprim ratio as a new marker in raw wastewaters: A critical review. Sci Total Environ 715:136916.
Tran NH, Reinhard M, Yew-Hoong Gin K. 2018. Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-A review. Water Res 133:182-207.
Tsiaka P, Tsarpali V, Ntaikou I, Kostopoulou MN, Lyberatos G, Dailianis S. 2013. Carbamazepine-mediated pro-oxidant effects on the unicellular marine algal species Dunaliella tertiolecta and the hemocytes of mussel Mytilus galloprovincialis. Ecotoxicology 8:1208-1220.
Turun seudun puhdistamo Oy. n.d. Turku (FI). [cited 2016 September 21]. Available from: https://www.turunseudunpuhdistamo.fi/
Van den Meersche T, Van Pamel E, Van Poucke C, Herman L, Heyndrickx M, Rasschaert G, Daeseleire E. 2016. Development, validation and application of an ultra high performance liquid chromatographic-tandem mass spectrometric method for the simultaneous detection and quantification of five different classes of veterinary antibiotics in swine manure. J Chromatogr A 1429:248-257.
Ventola CL. 2015. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm Ther J 40:277-283.
Verlicchi P, Al Aukidy M, Zambello E. 2015. What have we learned from worldwide experiences on the management and treatment of hospital effluent?-An overview and a discussion on perspectives. Sci Total Environ 514:467-449.
Von Sperling M. 2007. Basic Principles of Wastewater Treatment, Vol 2-Biological Wastewater Treatment. IWA, London, UK.
Wang H, Che B, Duan A, Mao J, Dahlgren RA, Zhang M, Zhang H, Zeng A, Wang X. 2014. Toxicity evaluation of β-diketone antibiotics on the development of embryo-larval zebrafish (Danio rerio). Environ Toxicol 29:1134-1146.
Wollenberger L, Halling-Sørensen B, Kusk KO. 2000. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723-730.
Yang LH, Ying GG, Su HC, Strauber JL, Adams MS, Binet MT. 2008. Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ Sci Technol 27:1201-1208.
Yuan XJ, Qiang ZM, Ben WW, Zhu B, Liu JX. 2014. Rapid detection of multiple class pharmaceuticals in both municipal wastewater and sludge with ultra-high-performance liquid chromatography tandem mass spectrometry. J Environ Sci 26:1949-1959.
Zhang T, Li B. 2011. Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit Rev Environ Sci Technol 41:951-998.
Zuccato E, Castiglioni S, Fanelli R. 2005. Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. J Hazard Mater 122:205-209.