Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics.
Journal
Nature materials
ISSN: 1476-4660
Titre abrégé: Nat Mater
Pays: England
ID NLM: 101155473
Informations de publication
Date de publication:
10 2020
10 2020
Historique:
received:
11
11
2019
accepted:
06
05
2020
pubmed:
17
6
2020
medline:
17
6
2020
entrez:
17
6
2020
Statut:
ppublish
Résumé
Biodegradable and biocompatible elastic materials for soft robotics, tissue engineering or stretchable electronics with good mechanical properties, tunability, modifiability or healing properties drive technological advance, and yet they are not durable under ambient conditions and do not combine all the attributes in a single platform. We have developed a versatile gelatin-based biogel, which is highly resilient with outstanding elastic characteristics, yet degrades fully when disposed. It self-adheres, is rapidly healable and derived entirely from natural and food-safe constituents. We merge all the favourable attributes in one material that is easy to reproduce and scalable, and has a low-cost production under ambient conditions. This biogel is a step towards durable, life-like soft robotic and electronic systems that are sustainable and closely mimic their natural antetypes.
Identifiants
pubmed: 32541932
doi: 10.1038/s41563-020-0699-3
pii: 10.1038/s41563-020-0699-3
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1102-1109Références
Hoornweg, D., Bhada-Tata, P. & Kennedy, C. Environment: waste production must peak this century. Nature 502, 615–617 (2013).
Leung, A., Luksemburg, W., Wong, A. & Wong, M. Spatial distribution of polybrominated diphenyl ethers and polychlorinated dibenzo-p-dioxins and dibenzofurans in soil and combusted residue at Guiyu, an electronic waste recycling site in southeast China. Environ. Sci. Technol. 41, 2730–2737 (2007).
Baumgartner, M. et al. in Green Materials for Electronics (eds Irimia‐Vladu, M., Glowacki, E. D., Sariciftci, N. S. & Bauer, S.) 1–53 (Wiley, 2017)
Irimia-Vladu, M. et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20, 4069–4076 (2010).
Boutry, C. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).
Walker, S. et al. Using an environmentally benign and degradable elastomer in soft robotics. Int. J. Intell. Robotics Appl. 1, 124–142 (2017).
Hwang, S. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).
Yang, C. & Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 3, 125–142 (2018).
Acome, E. et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359, 61–65 (2018).
Someya, T. & Amagai, M. Toward a new generation of smart skins. Nat. Biotechnol. 37, 382–388 (2019).
Li, C. H. et al. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 6, 618–624 (2016).
Cao, Y. et al. Self-healing electronic skins for aquatic environments. Nat. Electron. 2, 75–82 (2019).
Wang, S. et al. Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555, 83–88 (2018).
Wirthl, D. et al. Instant tough bonding of hydrogels for soft machines and electronics. Sci. Adv. 3, e1700053 (2017).
Wang, X. et al. Food-materials-based edible supercapacitors. Adv. Mater. Technol. 1, 1600059 (2016).
Bauer, S. & Kaltenbrunner, M. Built to disappear. ACS Nano 8, 5380–5382 (2014).
Yang, J., Webb, A. R. & Ameer, G. A. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16, 511–516 (2004).
Webb, A. R., Yang, J. & Ameer, G. A. Biodegradable polyester elastomers in tissue engineering. Expert Opin. Biol. Ther. 4, 801–812 (2004).
Wang, Y., Ameer, G. A., Sheppard, B. J. & Langer, R. A tough biodegradable elastomer. Nat. Biotechnol. 20, 602–606 (2002).
Cohn, D. & Salomon, A. H. Designing biodegradable multiblock PCL/PLA thermoplastic elastomers. Biomaterials 26, 2297–2305 (2005).
Skarja, G. A. & Woodhouse, K. A. In vitro degradation and erosion of degradable, segmented polyurethanes containing an amino acid-based chain extender. J. Biomater. Sci. Polym. Ed. 12, 851–873 (2001).
Averous, L., Moro, L., Dole, P. & Fringant, C. Properties of thermoplastic blends: starch–polycaprolactone. Polymer 41, 4157–4167 (2000).
Zhu, C. et al. Highly stretchable HA/SA hydrogels for tissue engineering. J. Biomater. Sci. Polym. Ed. 29, 543–561 (2018).
Shintake, J., Sonar, H., Piskarev, E., Paik, J. & Floreano, D. Soft pneumatic gelatin actuator for edible robotics. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 6221–6226 (IEEE, 2017).
Van Den Bulcke, A. I. et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–38 (2000).
Wu, T. et al. A pH-responsive biodegradable high-strength hydrogel as potential gastric resident filler. Macromol. Mater. Eng. 303, 1800290 (2018).
Ceseracciu, L., Heredia-Guerrero, J. A., Dante, S., Athanassiou, A. & Bayer, I. S. Robust and biodegradable elastomers based on corn starch and polydimethylsiloxane (PDMS). ACS Appl. Mater. Interfaces 7, 3742–3753 (2015).
He, Q., Huang, Y. & Wang, S. Hofmeister effect-assisted one step fabrication of ductile and strong gelatin hydrogels. Adv. Funct. Mater. 28, 1705069 (2018).
Qin, Z. et al. Freezing-tolerant supramolecular organohydrogel with high toughness, thermoplasticity, and healable and adhesive properties. ACS Appl. Mater. Interfaces 11, 21184–21193 (2019).
Schrieber, R. & Gareis, H. Gelatine Handbook (Wiley, 2007).
Luo, Z. et al. Biodegradable gelatin methacryloyl microneedles for transdermal drug delivery. Adv. Healthcare Mater. 8, 1801054 (2018).
Echave, M. et al. Enzymatic crosslinked gelatin 3D scaffolds for bone tissue engineering. Int. J. Pharm. 562, 151–161 (2019).
Mandrycky, C. et al. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422–434 (2016).
Kim, D., Lee, H., Kwon, S., Choi, H. & Park, S. Magnetic nano-particles retrievable biodegradable hydrogel microrobot. Sens. Actuators B 289, 65–77 (2019).
Chambers, L., Winfield, J., Ieropoulos, I. & Rossiter, J. Biodegradable and edible gelatine actuators for use as artificial muscles. In Proc. SPIE 9056, Electroactive Polymer Actuators and Devices 90560B (SPIE, 2014).
Sardesai, A. et al. Design and characterization of edible soft robotic candy actuators. MRS Adv. 3, 3003–3009 (2018).
Deng, Y., Zhang, Y., Lemos, B. & Ren, H. Tissue accumulation of microplastics in mice and biomarker responses suggest widespread health risks of exposure. Sci. Rep. 7, 46687 (2017).
Feig, V., Tran, H. & Bao, Z. Biodegradable polymeric materials in degradable electronic devices. ACS Centr. Sci. 4, 337–348 (2018).
Shimizu, S. & Matubayasi, N. Gelation: the role of sugars and polyols on gelatin and agarose. J. Phys. Chem. B 118, 13210–13216 (2014).
Polygerinos, P. et al. Soft robotics: review of fluid‐driven intrinsically soft devices; manufacturing, sensing, control, and applications in human–robot interaction. Adv. Engin. Mater. 19, 1700016 (2017).
Amjadi, M., Kyung, K.-U., Park, I. & Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review. Adv. Funct. Mater. 26, 1678–1698 (2016).
Krause, J., Winfield, A. & Deneubourg, J. Interactive robots in experimental biology. Trends Ecol. Evol. 26, 369–375 (2011).
Bogue, R. Fruit picking robots: has their time come?. Ind. Robot 47, 141–145 (2010).
Hohimer, C. J. et al. Design and field evaluation of a robotic apple harvesting system with a 3D-printed soft-robotic end-effector. Trans. ASABE 62, 405–415 (2019).
Hartmann, F., Drack, M. & Kaltenbrunner, M. Meant to merge: fabrication of stretchy electronics for robotics. Sci. Robotics 3, eaat9091 (2018).
Luangtana-anan, M., Nunthanid, J. & Limmatvapirat, S. Effect of molecular weight and concentration of polyethylene glycol on physicochemical properties and stability of shellac film. J. Agric. Food Chem. 58, 12934–12940 (2010).