Towards single-species selectivity of membranes with subnanometre pores.
Journal
Nature nanotechnology
ISSN: 1748-3395
Titre abrégé: Nat Nanotechnol
Pays: England
ID NLM: 101283273
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
17
10
2019
accepted:
12
05
2020
pubmed:
14
6
2020
medline:
14
6
2020
entrez:
14
6
2020
Statut:
ppublish
Résumé
Synthetic membranes with pores at the subnanometre scale are at the core of processes for separating solutes from water, such as water purification and desalination. While these membrane processes have achieved substantial industrial success, the capability of state-of-the-art membranes to selectively separate a single solute from a mixture of solutes is limited. Such high-precision separation would enable fit-for-purpose treatment, improving the sustainability of current water-treatment processes and opening doors for new applications of membrane technologies. Herein, we introduce the challenges of state-of-the-art membranes with subnanometre pores to achieve high selectivity between solutes. We then analyse experimental and theoretical literature to discuss the molecular-level mechanisms that contribute to energy barriers for solute transport through subnanometre pores. We conclude by providing principles and guidelines for designing next-generation single-species selective membranes that are inspired by ion-selective biological channels.
Identifiants
pubmed: 32533116
doi: 10.1038/s41565-020-0713-6
pii: 10.1038/s41565-020-0713-6
doi:
Types de publication
Journal Article
Review
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
426-436Références
Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).
doi: 10.1126/science.1200488
Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 1–15 (2016).
doi: 10.1038/natrevmats.2016.18
Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016).
doi: 10.1021/acs.estlett.6b00050
Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science 356, 1138–1148 (2017).
doi: 10.1126/science.aab3896
Werber, J. R. & Elimelech, M. Permselectivity limits of biomimetic desalination membranes. Sci. Adv. 4, eaar8266 (2018).
doi: 10.1126/sciadv.aar8266
Werber, J. R., Porter, C. J. & Elimelech, M. A path to ultraselectivity: Support layer properties to maximize performance of biomimetic desalination membranes. Environ. Sci. Technol. 52, 10737–10747 (2018).
doi: 10.1021/acs.est.8b03426
Ritt, C. L., Werber, J. R., Deshmukh, A. & Elimelech, M. Monte carlo simulations of framework defects in layered two-dimensional nanomaterial desalination membranes: implications for permeability and selectivity. Environ. Sci. Technol. 53, 6214–6224 (2019).
doi: 10.1021/acs.est.8b06880
Homaeigohar, S. & Elbahri, M. Graphene membranes for water desalination. NPG Asia Mater. 9, e427 (2017).
doi: 10.1038/am.2017.135
Luo, T., Abdu, S. & Wessling, M. Selectivity of ion exchange membranes: A review. J. Memb. Sci. 555, 429–454 (2018).
doi: 10.1016/j.memsci.2018.03.051
Zhang, H. et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 4, eaaq0066 (2018).
doi: 10.1126/sciadv.aaq0066
Li, X. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal-organic framework channels. Nat. Commun. 10, 2490 (2019).
doi: 10.1038/s41467-019-10420-9
Alvarez, P. J. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).
doi: 10.1038/s41565-018-0203-2
Sadeghi, I., Kaner, P. & Asatekin, A. Controlling and expanding the selectivity of filtration membranes. Chem. Mater. 21, 7328–7354 (2018).
doi: 10.1021/acs.chemmater.8b03334
Nghiem, L. D. et al. Extraction and transport of metal ions and small organic compounds using polymer inclusion membranes (PIMs). J. Memb. Sci. 281, 7–41 (2006).
doi: 10.1016/j.memsci.2006.03.035
Thiruraman, J. P. et al. Angstrom-size defect creation and ionic transport through pores in single-layer MoS
doi: 10.1021/acs.nanolett.7b04526
Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).
doi: 10.1038/nature19363
Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. The state of desalination and brine production: A global outlook. Sci. Total Environ. 657, 1343–1356 (2019).
doi: 10.1016/j.scitotenv.2018.12.076
Campione, A. et al. Electrodialysis for water desalination: A critical assessment of recent developments on process fundamentals, models and applications. Desalination 434, 121–160 (2018).
doi: 10.1016/j.desal.2017.12.044
Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective. J. Phys. Chem. C. 123, 21309–21326 (2019).
doi: 10.1021/acs.jpcc.9b02178
Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. J. Memb. Sci. 107, 1–21 (1995).
doi: 10.1016/0376-7388(95)00102-I
Mukherjee, P. & Sengupta, A. K. Ion exchange selectivity as a surrogate indicator of relative permeability of ions in reverse osmosis processes. Environ. Sci. Technol. 37, 1432–1440 (2003).
doi: 10.1021/es0207495
Epsztein, R., Cheng, W., Shaulsky, E., Dizge, N. & Elimelech, M. Elucidating the mechanisms underlying the difference between chloride and nitrate rejection in nanofiltration. J. Memb. Sci. 548, 694–701 (2017).
doi: 10.1016/j.memsci.2017.10.049
Sata, T. Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis - Effect of hydrophilicity of anion exchange membranes on permselectivity of anions. J. Memb. Sci. 167, 1–31 (2000).
doi: 10.1016/S0376-7388(99)00277-X
Cheng, W. et al. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: Role of polyelectrolyte charge, ion size, and ionic strength. J. Memb. Sci. 559, 98–106 (2018).
doi: 10.1016/j.memsci.2018.04.052
Collins, F. C. Activation energy of the Eyring theory of liquid viscosity and diffusion. J. Chem. Phys. 26, 398–400 (1957).
doi: 10.1063/1.1743306
Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).
doi: 10.1063/1.1749836
Ewell, R. H. & Eyring, H. Theory of the viscosity of liquids as a function of temperature and pressure. J. Chem. Phys. 5, 726–736 (1937).
doi: 10.1063/1.1750108
Zwolinski, B. J., Eyring, H. & Reese, C. E. Diffusion and membrane permeability. J. Phys. Colloid Chem. 53, 1426–1453 (1949).
doi: 10.1021/j150474a012
Castillo, L. F. Del, Mason, E. A. & Viehland, L. A. Energy-barrier models for membrane transport. Biophys. Chem. 9, 111–120 (1979).
doi: 10.1016/0301-4622(79)87005-2
Sogami, M. et al. Application of the transition state theory to water transport across cell membranes. Biochim. Biophys. Acta - Biomembr. 1511, 42–48 (2001).
doi: 10.1016/S0005-2736(00)00384-9
Babu, J. S. & Sathian, S. P. Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes. Phys. Rev. E 85, 051205 (2012).
doi: 10.1103/PhysRevE.85.051205
Epsztein, R., Qin, M., Shaulsky, E. & Elimelech, M. Activation behavior for ion permeation in ion-exchange membranes: Role of ion dehydration in selective transport. J. Memb. Sci. 580, 316–326 (2019).
doi: 10.1016/j.memsci.2019.02.009
Latorre, R. & Miller, C. Conduction and selectivity in potassium channels. J. Membr. Biol. 71, 11–30 (1983).
doi: 10.1007/BF01870671
Wang, J. H., Robinson, C. V. & Edelman, I. S. Self-diffusion and structure of liquid water. III. Measurement of the self-diffusion of liquid water with H
doi: 10.1021/ja01098a061
Venkataraman, L., Klare, J. E., Nuckolls, C., Hybertsen, M. S. & Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 442, 904–907 (2006).
doi: 10.1038/nature05037
Pati, R. & Karna, S. P. Current switching by conformational change in a π-σ-π molecular wire. Phys. Rev. B - Condens. Matter Mater. Phys. 69, 155419 (2004).
doi: 10.1103/PhysRevB.69.155419
Weigelt, S. et al. Chiral switching by spontaneous conformational change in adsorbed organic molecules. Nat. Mater. 5, 112–117 (2006).
doi: 10.1038/nmat1558
Daasbjerg, K. et al. Evidence for large inner reorganization energies in the reduction of diaryl disulfides: Toward a mechanistic link between concerted and stepwise dissociative electron transfers? J. Am. Chem. Soc. 121, 1750–1751 (1999).
doi: 10.1021/ja983374p
Pophristic, V., Goodman, L. & Guchhait, N. Role of lone-pairs in internal rotation barriers. J. Phys. Chem. A 101, 4290–4297 (1997).
doi: 10.1021/jp971020z
Sharma, R. R., Agrawal, R. & Chellam, S. Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: Pore size distributions and transport parameters. J. Memb. Sci. 223, 69–87 (2003).
doi: 10.1016/S0376-7388(03)00310-7
Luo, J. & Wan, Y. Effects of pH and salt on nanofiltration-a critical review. J. Membr. Sci. 438, 18–28 (2013).
doi: 10.1016/j.memsci.2013.03.029
Nghiem, L. D., Schäfer, A. I. & Elimelech, M. Role of electrostatic interactions in the retention of pharmaceutically active contaminants by a loose nanofiltration membrane. J. Memb. Sci. 286, 52–59 (2006).
doi: 10.1016/j.memsci.2006.09.011
Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D. M. & Elimelech, M. Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environ. Sci. Technol. 52, 4108–4116 (2018).
doi: 10.1021/acs.est.7b06400
Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. The importance of dehydration in determining ion transport in narrow pores. Small 8, 1701–1709 (2012).
doi: 10.1002/smll.201102056
Marcus, Y. Thermodynamics of solvation of ions. J. Chem. Soc. Faraday Trans. 87, 2995–2999 (1991).
doi: 10.1039/FT9918702995
Ben-Amotz, D., Raineri, F. O. & Stell, G. Solvation thermodynamics: Theory and applications. J. Phys. Chem. B 109, 6866–6878 (2005).
doi: 10.1021/jp045090z
Sahu, S., Di Ventra, M. & Zwolak, M. Dehydration as a universal mechanism for ion selectivity in graphene and other atomically thin pores. Nano Lett. 17, 4719–4724 (2017).
doi: 10.1021/acs.nanolett.7b01399
Richards, L. A., Schäfer, A. I., Richards, B. S. & Corry, B. Quantifying barriers to monovalent anion transport in narrow non-polar pores. Phys. Chem. Chem. Phys. 14, 11633–11638 (2012).
doi: 10.1039/c2cp41641g
Zwolak, M., Wilson, J. & Di Ventra, M. Dehydration and ionic conductance quantization in nanopores. J. Phys. Condens. Matter 22, 454126 (2010).
doi: 10.1088/0953-8984/22/45/454126
Tansel, B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects. Sep. Purif. Technol. 86, 119–126 (2012).
doi: 10.1016/j.seppur.2011.10.033
Sata, T., Yamaguchi, T. & Matsusaki, K. Effect of hydrophobicity of ion exchange groups of anion exchange membranes on permselectivity between two anions. J. Phys. Chem. 99, 12875–12882 (1995).
doi: 10.1021/j100034a028
Hannesschlaeger, C., Horner, A. & Pohl, P. Intrinsic membrane permeability to small molecules. Chem. Rev. 119, 5922–5953 (2019).
doi: 10.1021/acs.chemrev.8b00560
De Gier, J., Mandersloot, J. G., Hupkes, J. V., McElhaney, R. N. & van Veek, W. P. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim. Biophys. Acta 233, 610–618 (1971).
doi: 10.1016/0005-2736(71)90160-X
Noy, A. Kinetic model of gas transport in carbon nanotube channels. J. Phys. Chem. C. 117, 7656–7660 (2013).
doi: 10.1021/jp4005407
Boo, C. et al. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environ. Sci. Technol. 52, 7279–7288 (2018).
doi: 10.1021/acs.est.8b01040
DuChanois, R. M., Epsztein, R., Trivedi, J. A. & Elimelech, M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. J. Memb. Sci. 581, 413–420 (2019).
doi: 10.1016/j.memsci.2019.03.077
Farrokhzad, H., Darvishmanesh, S., Genduso, G., Van Gerven, T. & Van Der Bruggen, B. Development of bivalent cation selective ion exchange membranes by varying molecular weight of polyaniline. Electrochim. Acta 158, 64–72 (2015).
doi: 10.1016/j.electacta.2015.01.062
Vaselbehagh, M., Karkhanechi, H., Takagi, R. & Matsuyama, H. Surface modification of an anion exchange membrane to improve the selectivity for monovalent anions in electrodialysis - experimental verification of theoretical predictions. J. Memb. Sci. 490, 301–310 (2015).
doi: 10.1016/j.memsci.2015.04.014
Epsztein, R., Nir, O., Lahav, O. & Green, M. Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme. Chem. Eng. J. 279, 372–378 (2015).
doi: 10.1016/j.cej.2015.05.010
Zhou, Y. & MacKinnon, R. The occupancy of ions in the K+ selectivity filter: Charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J. Mol. Biol. 333, 965–975 (2003).
doi: 10.1016/j.jmb.2003.09.022
Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).
doi: 10.1126/science.280.5360.69
Morais-Cabral, Ä. H., Kaufman, A. & Mackinnon, R. Chemistry of ion coordination and hydration revealed by a K
doi: 10.1038/35102000
Gouaux, E. & MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).
doi: 10.1126/science.1113666
Barboiu, M. Encapsulation versus self-aggregation toward highly selective artificial K
doi: 10.1021/acs.accounts.8b00311
Gilles, A. & Barboiu, M. Highly selective artificial K+ channels: An example of selectivity-induced transmembrane potential. J. Am. Chem. Soc. 138, 426–432 (2016).
doi: 10.1021/jacs.5b11743
Glasstone, S., Laidler, K. J. & Eyring, H. The Theory of Rate Processes (McGraw-Hill Book Company, 1941).
Eyring, H. The activated complex and the absolute rate of chemical reactions. Chem. Rev. 17, 65–77 (1935).
doi: 10.1021/cr60056a006
Kopec, W. et al. Direct knock-on of desolvated ions governs strict ion selectivity in K
doi: 10.1038/s41557-018-0105-9
Schoch, R. B., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).
doi: 10.1103/RevModPhys.80.839
Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).
doi: 10.1038/nnano.2017.21
Li, W., Wu, W. & Li, Z. Controlling interlayer spacing of graphene oxide membranes by external pressure regulation. ACS Nano 12, 9309–9317 (2018).
doi: 10.1021/acsnano.8b04187
Simon, G. P. et al. Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing. Sci. Adv. 2, e1501272 (2016).
doi: 10.1126/sciadv.1501272
Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 1–4 (2017).
doi: 10.1038/550S1a
Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).
doi: 10.1126/science.1245711
Choi, W. et al. Diameter-dependent ion transport through the interior of isolated single-walled carbon nanotubes. Nat. Commun. 4, 2397 (2013).
doi: 10.1038/ncomms3397
Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).
doi: 10.1126/science.aan2438
Ali, S., Rehman, S. A. U., Luan, H. Y., Farid, M. U. & Huang, H. Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Sci. Total Environ. 646, 1126–1139 (2019).
doi: 10.1016/j.scitotenv.2018.07.348
Li, F., Li, L., Liao, X. & Wang, Y. Precise pore size tuning and surface modifications of polymeric membranes using the atomic layer deposition technique. J. Memb. Sci. 385–386, 1–9 (2011).
doi: 10.1016/j.memsci.2011.06.042
Chen, P. et al. Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores. Nano Lett. 4, 1333–1337 (2004).
doi: 10.1021/nl0494001
Spichiger-keller, U. E. Ionophores, ligands and reactands. Anal. Chim. Acta 400, 65–72 (1999).
doi: 10.1016/S0003-2670(99)00655-8
Ovchinnikov, Y. A. Physico‐chemical basis of ion transport through biological membranes: ionophores and ion channels. Eur. J. Biochem. 94, 321–336 (1979).
doi: 10.1111/j.1432-1033.1979.tb12898.x
Ammann, D. et al. Preparation of neutral ionophores for alkali and alkaline earth metal cations and their application in ion selective membrane electrodes. Helv. Chem. Acta 58, 1535–1548 (1975).
doi: 10.1002/hlca.19750580605
Bowman-James, K. Alfred Werner revisited: The coordination chemistry of anions. Acc. Chem. Res. 38, 671–678 (2005).
doi: 10.1021/ar040071t
Kang, S. O., Begum, R. A. & Bowman-James, K. Amide-based ligands for anion coordination. Angew. Chem. Int. Ed. 45, 7882–7894 (2006).
doi: 10.1002/anie.200602006
Prets, E., Badertscher, M., Welti, M., Morf, W. E. & Simon, W. Design features of ionophores for ion selective electrodes. Pure Appl. Chem. 60, 567–574 (1988).
doi: 10.1351/pac198860040567
Almeida, M. I. G. S., Cattrall, R. W. & Kolev, S. D. Recent trends in extraction and transport of metal ions using polymer inclusion membranes (PIMs). J. Memb. Sci. 415–416, 9–23 (2012).
doi: 10.1016/j.memsci.2012.06.006
Sheng, C., Wijeratne, S., Cheng, C., Baker, G. L. & Bruening, M. L. Facilitated ion transport through polyelectrolyte multilayer films containing metal-binding ligands. J. Memb. Sci. 459, 169–176 (2014).
doi: 10.1016/j.memsci.2014.01.051
Toutianoush, A., El-Hashani, A., Schnepf, J. & Tieke, B. Multilayer membranes of p-sulfonato-calix[8]arene and polyvinylamine and their use for selective enrichment of rare earth metal ions. Appl. Surf. Sci. 246, 430–436 (2005).
doi: 10.1016/j.apsusc.2004.11.048
Acar, E. T., Buchsbaum, S. F., Combs, C., Fornasiero, F. & Siwy, Z. S. Biomimetic potassium-selective nanopores. Sci. Adv. 5, eaav2568 (2019).
doi: 10.1126/sciadv.aav2568
Fang, A., Kroenlein, K., Riccardi, D. & Smolyanitsky, A. Highly mechanosensitive ion channels from graphene-embedded crown ethers. Nat. Mater. 18, 76–81 (2019).
doi: 10.1038/s41563-018-0220-4
Richards, L. A., Richards, B. S., Corry, B. & Schäfer, A. I. Experimental energy barriers to anions transporting through nanofiltration membranes. Environ. Sci. Technol. 47, 1968–1976 (2013).
doi: 10.1021/es303925r
Sigurdardottir, S. B., DuChanois, R. M., Epsztein, R., Pinelo, M. & Elimelech, M. Energy barriers to anion transport in nanofiltration membranes: role of intra-pore diffusion. J. Memb. Sci. 603, 117921 (2020).
doi: 10.1016/j.memsci.2020.117921
Khavrutskii, I. V., Gorfe, A. A., Lu, B. & McCammon, J. A. Free energy for the permeation of Na+ and CI- ions and their Ion-pair through a zwitterionic dimyristoyl phosphatidylcholine lipid bilayer by umbrella integration with harmonic fourier beads. J. Am. Chem. Soc. 131, 1706–1716 (2009).
doi: 10.1021/ja8081704
Gao, P., Hunter, A., Summe, M. J. & Phillip, W. A. A method for the efficient fabrication of multifunctional mosaic membranes by inkjet printing. ACS Appl. Mater. Interfaces 8, 19772–19779 (2016).
doi: 10.1021/acsami.6b06048
Rajesh, S., Yan, Y., Chang, H. C., Gao, H. & Phillip, W. A. Mixed mosaic membranes prepared by layer-by-layer assembly for ionic separations. ACS Nano 8, 12338–12345 (2014).
doi: 10.1021/nn504736w
Malmir, H. et al. Induced charge anisotropy: A hidden variable affecting ion transport through membranes. Matter 2, 735–750 (2019).
doi: 10.1016/j.matt.2019.12.022
Haji-Akbari, A. Forward-flux sampling with jumpy order parameters. J. Chem. Phys. 149, 072303 (2018).
doi: 10.1063/1.5018303
Tu, K. L., Nghiem, L. D. & Chivas, A. R. Coupling effects of feed solution pH and ionic strength on the rejection of boron by NF/RO membranes. Chem. Eng. J. 168, 700–706 (2011).
doi: 10.1016/j.cej.2011.01.101
Somrani, A., Hamzaoui, A. H. & Pontie, M. Study on lithium separation from salt lake brines by nanofiltration (NF) and low pressure reverse osmosis (LPRO). Desalination 317, 184–192 (2013).
doi: 10.1016/j.desal.2013.03.009
Saraf, A., Johnson, K. & Lind, M. L. Poly(vinyl) alcohol coating of the support layer of reverse osmosis membranes to enhance performance in forward osmosis. Desalination 333, 1–9 (2014).
doi: 10.1016/j.desal.2013.11.024
Nicolini, J. V., Borges, C. P. & Ferraz, H. C. Selective rejection of ions and correlation with surface properties of nanofiltration membranes. Sep. Purif. Technol. 171, 238–247 (2016).
doi: 10.1016/j.seppur.2016.07.042
Qi, S. et al. Polymersomes-based high-performance reverse osmosis membrane for desalination. J. Memb. Sci. 555, 177–184 (2018).
doi: 10.1016/j.memsci.2018.03.052
Richards, L. A., Vuachère, M. & Schäfer, A. I. Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 261, 331–337 (2010).
doi: 10.1016/j.desal.2010.06.025
Jeong, B. H. et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. J. Memb. Sci. 294, 1–7 (2007).
doi: 10.1016/j.memsci.2007.02.025
Hong, S. U., Malaisamy, R. & Bruening, M. L. Optimization of flux and selectivity in Cl-/SO42- separations with multilayer polyelectrolyte membranes. J. Membr. Sci. 283, 366–372 (2006).
doi: 10.1016/j.memsci.2006.07.007
Mukherjee, D., Kulkarni, A. & Gill, W. N. Flux enhancement of reverse osmosis membranes by chemical surface modification. J. Memb. Sci. 97, 231–249 (1994).
doi: 10.1016/0376-7388(94)00165-U
Harrison, C. J., Le Gouellec, Y. A., Cheng, R. C. & Childress, A. E. Bench-scale testing of nanofiltration for seawater desalination. J. Environ. Eng. 133, 1004–1014 (2007).
doi: 10.1061/(ASCE)0733-9372(2007)133:11(1004)
Giagnorio, M. et al. Achieving low concentrations of chromium in drinking water by nanofiltration: membrane performance and selection. Environ. Sci. Pollut. Res. 25, 25294–25305 (2018).
doi: 10.1007/s11356-018-2627-5
Redondo, J. A. & Frank, K. F. Sea water applications with FILMTEC reverse osmosis membranes from small to large plants in 10 years. Desalination 82, 31–49 (1991).
doi: 10.1016/0011-9164(91)85169-U
Arena, J. T., McCloskey, B., Freeman, B. D. & McCutcheon, J. R. Surface modification of thin film composite membrane support layers with polydopamine: Enabling use of reverse osmosis membranes in pressure retarded osmosis. J. Memb. Sci. 375, 55–62 (2011).
doi: 10.1016/j.memsci.2011.01.060
Al-Zoubi, H., Hilal, N., Darwish, N. A. & Mohammad, A. W. Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler-Kedem model. Desalination 206, 42–60 (2007).
doi: 10.1016/j.desal.2006.02.060
Widjaya, A., Hoang, T., Stevens, G. W. & Kentish, S. E. A comparison of commercial reverse osmosis membrane characteristics and performance under alginate fouling conditions. Sep. Purif. Technol. 89, 270–281 (2012).
doi: 10.1016/j.seppur.2012.01.038
Malaisamy, R., Talla-Nwafo, A. & Jones, K. L. Polyelectrolyte modification of nanofiltration membrane for selective removal of monovalent anions. Sep. Purif. Technol. 77, 367–374 (2011).
doi: 10.1016/j.seppur.2011.01.005
Wang, K. Y., Chung, T. S. & Qin, J. J. Polybenzimidazole (PBI) nanofiltration hollow fiber membranes applied in forward osmosis process. J. Memb. Sci. 300, 6–12 (2007).
doi: 10.1016/j.memsci.2007.05.035
Freger, V., Arnot, T. C. & Howell, J. A. Separation of concentrated organic/inorganic salt mixtures by nanofiltration. J. Memb. Sci. 178, 185–193 (2000).
doi: 10.1016/S0376-7388(00)00516-0
Nilsson, M., Trägårdh, G. & Östergren, K. The influence of sodium chloride on mass transfer in a polyamide nanofiltration membrane at elevated temperatures. J. Memb. Sci. 280, 928–936 (2006).
doi: 10.1016/j.memsci.2006.03.013
Tsuru, T., Izumi, S., Yoshioka, T. & Asaeda, M. Temperature effect on transport performance by inorganic nanofiltration membranes. AIChE J. 46, 565–574 (2000).
doi: 10.1002/aic.690460315
Tsuru, T., Ogawa, K., Kanezashi, M. & Yoshioka, T. Permeation characteristics of electrolytes and neutral solutes through titania nanofiltration membranes at high temperatures. Langmuir 26, 10897–10905 (2010).
doi: 10.1021/la100791j
Sharma, R. R. & Chellam, S. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation. J. Colloid Interface Sci. 298, 327–340 (2006).
doi: 10.1016/j.jcis.2005.12.033
Snow, M. J. H., de Winter, D., Buckingham, R., Campbell, J. & Wagner, J. New techniques for extreme conditions: high temperature reverse osmosis and nanofiltration. Desalination 105, 57–61 (1996).
doi: 10.1016/0011-9164(96)00058-6
Saltonstall, C. W. Jr Practical aspects of sea water desalination by reverse osmosis. Desalination 18, 315–320 (1976).
doi: 10.1016/S0011-9164(00)84121-1
Li, L., Dong, J. & Nenoff, T. M. Transport of water and alkali metal ions through MFI zeolite membranes during reverse osmosis. Sep. Purif. Technol. 53, 42–48 (2007).
doi: 10.1016/j.seppur.2006.06.012
Mehdizadeh, H., Dickson, J. M. & Eriksson, P. K. Temperature effects on the performance of thin-film composite, aromatic polyamide membranes. Ind. Eng. Chem. Res. 28, 814–824 (1989).
doi: 10.1021/ie00090a025
Connell, P. J. & Dickson, J. M. Modeling reverse osmosis separations with strong solute‐membrane affinity at different temperatures using the finely porous model. J. Appl. Polym. Sci. 35, 1129–1148 (1988).
doi: 10.1002/app.1988.070350501
Chen, J.-Y., Nomura, H. & Pusch, W. Temperature dependence of membrane transport parameters in hyperfiltration. Desalination 46, 437–446 (1983).
doi: 10.1016/0011-9164(83)87187-2
Lonsdale, H. K., Merten, U. & Riley, R. L. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 9, 1341–1362 (1965).
doi: 10.1002/app.1965.070090413
Reid, C. E. & Kuppers, J. R. Physical characteristics of osmotic membranes of organic polymers. J. Appl. Polym. Sci. 2, 264–272 (1959).
doi: 10.1002/app.1959.070020602
Gary-Bobo, C. M. Effect of geometrical and chemical constraints on water flux across artificial membranes. J. Gen. Physiol. 57, 610–622 (2004).
doi: 10.1085/jgp.57.5.610
Gary-Bobo, C. M. Role of hydrogen-bonding in nonelectrolyte diffusion through dense artificial membranes. J. Gen. Physiol. 54, 369–382 (2004).
doi: 10.1085/jgp.54.3.369
Badessa, T. & Shaposhnik, V. The electrodialysis of electrolyte solutions of multi-charged cations. J. Memb. Sci. 498, 86–93 (2016).
doi: 10.1016/j.memsci.2015.09.017
Freger, V. et al. Diffusion of water and ethanol in ion-exchange membranes: Limits of the geometric approach. J. Memb. Sci. 160, 213–224 (1999).
doi: 10.1016/S0376-7388(99)00084-8
Kumar, M., Grzelakowski, M., Zilles, J., Clark, M. & Meier, W. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z. Proc. Natl Acad. Sci. USA 104, 20719–20724 (2007).
doi: 10.1073/pnas.0708762104
Borgnia, M. J., Kozono, D., Calamita, G., Maloney, P. C. & Agre, P. Functional reconstitution and characterization of AqpZ, the E. coli water channel protein. J. Mol. Biol. 291, 1169–1179 (1999).
doi: 10.1006/jmbi.1999.3032
Corry, B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 112, 1427–1434 (2008).
doi: 10.1021/jp709845u
Song, C. & Corry, B. Intrinsic ion selectivity of narrow hydrophobic pores. J. Phys. Chem. B 113, 7642–7649 (2009).
doi: 10.1021/jp810102u
Williams, C. D. & Carbone, P. Selective removal of technetium from water using graphene oxide membranes. Environ. Sci. Technol. 50, 3875–3881 (2016).
doi: 10.1021/acs.est.5b06032
Sahu, S. & Zwolak, M. Ionic selectivity and filtration from fragmented dehydration in multilayer graphene nanopores. Nanoscale 9, 11424–11428 (2017).
doi: 10.1039/C7NR03838K
Konatham, D., Yu, J., Ho, T. A. & Striolo, A. Simulation insights for graphene-based water desalination membranes. Langmuir 29, 11884–11897 (2013).
doi: 10.1021/la4018695
Zwolak, M., Lagerqvist, J. & Di Ventra, M. Quantized ionic conductance in nanopores. Phys. Rev. Lett. 103, 128102 (2009).
doi: 10.1103/PhysRevLett.103.128102
Arrhenius, S. A. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z. Phys. Chem. 4, 226–248 (1889).
Eyring, H. The theory of absolute reaction rates. Trans. Faraday Soc. 34, 41–48 (1938).
doi: 10.1039/tf9383400041
Kramers, H. A. Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284–304 (1940).
doi: 10.1016/S0031-8914(40)90098-2
Hanggi, P. 50 years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990).
doi: 10.1103/RevModPhys.62.251
Wynne-Jones, W. F. K. & Eyring, H. The absolute rate of reactions in condensed phases. J. Chem. Phys. 3, 492–502 (1935).
doi: 10.1063/1.1749713
Garrett, B. C. Variational transition state theory. Ann. Rev. Phys. Chem. 35, 159–189 (1984).
doi: 10.1146/annurev.pc.35.100184.001111