Influence of the long-term use of oral hygiene products containing stannous ions on the salivary microbiome - a randomized controlled trial.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 06 2020
12 06 2020
Historique:
received:
18
11
2019
accepted:
19
05
2020
entrez:
14
6
2020
pubmed:
14
6
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Oral hygiene products containing tin are suitable to prevent erosive tooth wear, yet effects on the oral microbiota are not known yet. Therefore, this study determined the salivary microbiome of 16 participants using products with stannous ions for three years (TG) compared with a control group (CG) to assess their influence on the microbiota. Participants were included in a randomized controlled clinical trial (RCT) with biannual visits. Illumina Miseq sequencing revealed as most abundant genera: Streptococcus (TG 14.3%; CG 13.0%), Veillonella (TG 11.3%; CG 10.9%), Prevotella (TG 7.0%; CG 9.8%), Haemophilus (TG 6.6%; CG 7.2%), Porphyromonas (TG 5.9%, CG 5.1%), Leptotrichia (TG 5.8%; CG 4.9%), Actinomyces (TG 4.0%; CG 4.6%) and Neisseria (TG 5.4%; CG 4.2%). Beta-Diversity was not significantly different between groups at both time points, although significant differences between groups were found for certain taxa after three years. The genus Prevotella was found in higher abundance in CG whereas Neisseria and Granulicatella, health-associated taxa, were found more abundantly in TG. Salivary microbiota after three years reflected a composition associated with oral health, hence continual use as a preventive measure for dental erosion can be considered safe and benefitting oral health for patients with a high risk of erosion.
Identifiants
pubmed: 32533015
doi: 10.1038/s41598-020-66412-z
pii: 10.1038/s41598-020-66412-z
pmc: PMC7293238
doi:
Substances chimiques
Ions
0
Types de publication
Clinical Trial
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
9546Références
Schlueter, N. & Luka, B. Erosive tooth wear - a review on global prevalence and on its prevalence in risk groups. Br Dent J 224, 364–370, https://doi.org/10.1038/sj.bdj.2018.167 (2018).
doi: 10.1038/sj.bdj.2018.167
pubmed: 29495027
Ganss, C., Lussi, A. & Schlueter, N. Dental erosion as oral disease. Insights in etiological factors and pathomechanisms, and current strategies for prevention and therapy. Am J Dent 25, 351–364 (2012).
pubmed: 23409626
Ganss, C., Neutard, L., von Hinckeldey, J., Klimek, J. & Schlueter, N. Efficacy of a tin/fluoride rinse: a randomized in situ trial on erosion. J Dent Res 89, 1214–1218, https://doi.org/10.1177/0022034510375291 (2010).
doi: 10.1177/0022034510375291
pubmed: 20581352
Joao-Souza, S. H. et al. In situ evaluation of fluoride-, stannous- and polyphosphate-containing solutions against enamel erosion. J Dent 63, 30–35, https://doi.org/10.1016/j.jdent.2017.05.014 (2017).
doi: 10.1016/j.jdent.2017.05.014
pubmed: 28552363
Rakhmatullina, E., Beyeler, B. & Lussi, A. Inhibition of enamel erosion by stannous and fluoride containing rinsing solutions. Schweiz Monatsschr Zahnmed 123, 192–198 (2013).
pubmed: 23519818
Schlueter, N., Klimek, J. & Ganss, C. In vitro efficacy of experimental tin- and fluoride-containing mouth rinses as anti-erosive agents in enamel. J Dent 37, 944–948, https://doi.org/10.1016/j.jdent.2009.07.010 (2009).
doi: 10.1016/j.jdent.2009.07.010
pubmed: 19660515
Carvalho, T. S. et al. Consensus report of the European Federation of Conservative Dentistry: erosive tooth wear–diagnosis and management. Clin Oral Investig 19, 1557–1561, https://doi.org/10.1007/s00784-015-1511-7 (2015).
doi: 10.1007/s00784-015-1511-7
pubmed: 26121968
Lussi, A. et al. The use of fluoride for the prevention of dental erosion and erosive tooth wear in children and adolescents. Eur Arch Paediatr Dent https://doi.org/10.1007/s40368-019-00420-0 (2019).
doi: 10.1007/s40368-019-00420-0
pubmed: 30762211
Schlueter, N. et al. Tin-containing fluoride solutions as anti-erosive agents in enamel: an in vitro tin-uptake, tissue-loss, and scanning electron micrograph study. Eur J Oral Sci 117, 427–434, https://doi.org/10.1111/j.1600-0722.2009.00647.x (2009).
doi: 10.1111/j.1600-0722.2009.00647.x
pubmed: 19627355
Addy, M., Greenman, J., Renton-Harper, P., Newcombe, R. & Doherty, F. Studies on stannous fluoride toothpaste and gel (2). Effects on salivary bacterial counts and plaque regrowth in vivo. J Clin Periodontol 24, 86–91 (1997).
doi: 10.1111/j.1600-051X.1997.tb00472.x
Cheng, X. et al. Comparative effect of a stannous fluoride toothpaste and a sodium fluoride toothpaste on a multispecies biofilm. Arch Oral Biol 74, 5–11, https://doi.org/10.1016/j.archoralbio.2016.10.030 (2017).
doi: 10.1016/j.archoralbio.2016.10.030
pubmed: 27838508
Meurman, J. H., Kari, K., Aikas, A. & Kallio, P. One-year compliance and effects of amine and stannous fluoride on some salivary biochemical constituents and oral microbes in institutionalized elderly. Spec Care Dentist 21, 32–36 (2001).
doi: 10.1111/j.1754-4505.2001.tb00221.x
Shapiro, S., Giertsen, E. & Guggenheim, B. An in vitro oral biofilm model for comparing the efficacy of antimicrobial mouthrinses. Caries Res 36, 93–100, https://doi.org/10.1159/000057866 (2002).
doi: 10.1159/000057866
pubmed: 12037365
Marsh, P. D. In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Adv Dent Res 29, 60–65, https://doi.org/10.1177/0022034517735295 (2018).
doi: 10.1177/0022034517735295
pubmed: 29355410
Anderson, A. C. et al. In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. 8, 14202, https://doi.org/10.1038/s41598-018-32544-6 (2018).
Sultan, A. S. & Kong, E. F. The oral microbiome: A Lesson in coexistence. 14, e1006719, https://doi.org/10.1371/journal.ppat.1006719 (2018).
ten Cate, J. M. & Zaura, E. The numerous microbial species in oral biofilms: how could antibacterial therapy be effective? Adv Dent Res 24, 108–111, https://doi.org/10.1177/0022034512450028 (2012).
doi: 10.1177/0022034512450028
pubmed: 22899691
Cabral, D. J. et al. The salivary microbiome is consistent between subjects and resistant to impacts of short-term hospitalization. Sci Rep 7, 11040, https://doi.org/10.1038/s41598-017-11427-2 (2017).
doi: 10.1038/s41598-017-11427-2
pubmed: 28887570
pmcid: 5591268
Hall, M. W. et al. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. NPJ Biofilms Microbiomes 3, 2, https://doi.org/10.1038/s41522-016-0011-0 (2017).
doi: 10.1038/s41522-016-0011-0
pubmed: 28649403
pmcid: 5445578
Takeshita, T. et al. Bacterial diversity in saliva and oral health-related conditions: the Hisayama Study. Sci Rep 6, 22164, https://doi.org/10.1038/srep22164 (2016).
doi: 10.1038/srep22164
pubmed: 26907866
pmcid: 4764907
Belstrom, D., Constancias, F., Liu, Y. & Yang, L. Metagenomic and metatranscriptomic analysis of saliva reveals disease-associated microbiota in patients with periodontitis and dental caries. 3, 23, https://doi.org/10.1038/s41522-017-0031-4 (2017).
Teng, F. et al. Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota. Cell Host Microbe 18, 296–306, https://doi.org/10.1016/j.chom.2015.08.005 (2015).
doi: 10.1016/j.chom.2015.08.005
pubmed: 26355216
Yang, F. et al. Saliva microbiomes distinguish caries-active from healthy human populations. Isme j 6, 1–10, https://doi.org/10.1038/ismej.2011.71 (2012).
doi: 10.1038/ismej.2011.71
pubmed: 21716312
Huysmans, M. C., Young, A. & Ganss, C. The role of fluoride in erosion therapy. Monogr Oral Sci 25, 230–243, https://doi.org/10.1159/000360555 (2014).
doi: 10.1159/000360555
pubmed: 24993271
Kageyama, S. et al. Relative abundance of total subgingival plaque-specific bacteria in salivary microbiota reflects the overall periodontal condition in patients with periodontitis. 12, e0174782, https://doi.org/10.1371/journal.pone.0174782 (2017).
Auschill, T. M. et al. Effect of two antimicrobial agents on early in situ biofilm formation. J Clin Periodontol 32, 147–152, https://doi.org/10.1111/j.1600-051X.2005.00650.x (2005).
doi: 10.1111/j.1600-051X.2005.00650.x
pubmed: 15691343
Schaeken, M. J., De Jong, M. H., Franken, H. C. & Van der Hoeven, J. S. Effects of highly concentrated stannous fluoride and chlorhexidine regimes on human dental plaque flora. J Dent Res 65, 57–61, https://doi.org/10.1177/00220345860650011001 (1986).
doi: 10.1177/00220345860650011001
pubmed: 3455699
Lazarevic, V., Whiteson, K., Hernandez, D., Francois, P. & Schrenzel, J. Study of inter- and intra-individual variations in the salivary microbiota. BMC Genomics 11, 523, https://doi.org/10.1186/1471-2164-11-523 (2010).
doi: 10.1186/1471-2164-11-523
pubmed: 20920195
pmcid: 2997015
Zaura, E., Brandt, B. W. & Prodan, A. On the ecosystemic network of saliva in healthy young adults. 11, 1218–1231, https://doi.org/10.1038/ismej.2016.199 (2017).
Kumar, P. S. & Mason, M. R. Mouthguards: does the indigenous microbiome play a role in maintaining oral health? Front Cell Infect Microbiol 5, 35, https://doi.org/10.3389/fcimb.2015.00035 (2015).
doi: 10.3389/fcimb.2015.00035
pubmed: 26000251
pmcid: 4422079
Yamashita, Y. & Takeshita, T. The oral microbiome and human health. J Oral Sci 59, 201–206, https://doi.org/10.2334/josnusd.16-0856 (2017).
doi: 10.2334/josnusd.16-0856
pubmed: 28637979
Sanz, M. et al. Role of microbial biofilms in the maintenance of oral health and in the development of dental caries and periodontal diseases. Consensus report of group 1 of the Joint EFP/ORCA workshop on the boundaries between caries and periodontal disease. J Clin Periodontol 44(Suppl 18), S5–s11, https://doi.org/10.1111/jcpe.12682 (2017).
doi: 10.1111/jcpe.12682
pubmed: 28266109
Frese, C. et al. Clinical management and prevention of dental caries in athletes: A four-year randomized controlled clinical trial. Sci Rep 8, 16991, https://doi.org/10.1038/s41598-018-34777-x (2018).
doi: 10.1038/s41598-018-34777-x
pubmed: 30451891
pmcid: 6242938
Frese, C. et al. Clinical effect of stannous fluoride and amine fluoride containing oral hygiene products: A 4-year randomized controlled pilot study. Sci Rep 9, 7681, https://doi.org/10.1038/s41598-019-44164-9 (2019).
doi: 10.1038/s41598-019-44164-9
pubmed: 31118458
pmcid: 6531450
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41, e1, https://doi.org/10.1093/nar/gks808 (2013).
doi: 10.1093/nar/gks808
pubmed: 22933715
pmcid: 22933715
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41, D590–596, https://doi.org/10.1093/nar/gks1219 (2013).
doi: 10.1093/nar/gks1219
pubmed: 23193283
pmcid: 23193283
Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods 13, 581–583, https://doi.org/10.1038/nmeth.3869 (2016).
doi: 10.1038/nmeth.3869
pubmed: 4927377
pmcid: 4927377
Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol 12(6), R60, https://doi.org/10.1186/gb-2011-12-6-r60 (2011).
doi: 10.1186/gb-2011-12-6-r60
pubmed: 3218848
pmcid: 3218848