Effect of the Uniaxial Compression on the GaAs Nanowire Solar Cell.
GaAs
gallium arsenide
nanowire
piezoelectric
piezophototronic
piezoresistance
polarization
solar cell
wurtzite
zinc blende
Journal
Micromachines
ISSN: 2072-666X
Titre abrégé: Micromachines (Basel)
Pays: Switzerland
ID NLM: 101640903
Informations de publication
Date de publication:
10 Jun 2020
10 Jun 2020
Historique:
received:
27
04
2020
revised:
05
06
2020
accepted:
08
06
2020
entrez:
14
6
2020
pubmed:
14
6
2020
medline:
14
6
2020
Statut:
epublish
Résumé
Research regarding ways to increase solar cell efficiency is in high demand. Mechanical deformation of a nanowire (NW) solar cell can improve its efficiency. Here, the effect of uniaxial compression on GaAs nanowire solar cells was studied via conductive atomic force microscopy (C-AFM) supported by numerical simulation. C-AFM I-V curves were measured for wurtzite p-GaAs NW grown on p-Si substrate. Numerical simulations were performed considering piezoresistance and piezoelectric effects. Solar cell efficiency reduction of 50% under a -0.5% strain was observed. The analysis demonstrated the presence of an additional fixed electrical charge at the NW/substrate interface, which was induced due to mismatch between the crystal lattices, thereby affecting the efficiency. Additionally, numerical simulations regarding the p-n GaAs NW solar cell under uniaxial compression were performed, showing that solar efficiency could be controlled by mechanical deformation and configuration of the wurtzite and zinc blende p-n segments in the NW. The relative solar efficiency was shown to be increased by 6.3% under -0.75% uniaxial compression. These findings demonstrate a way to increase efficiency of GaAs NW-based solar cells via uniaxial mechanical compression.
Identifiants
pubmed: 32532075
pii: mi11060581
doi: 10.3390/mi11060581
pmc: PMC7345117
pii:
doi:
Types de publication
Journal Article
Langues
eng
Subventions
Organisme : Russian Science Foundation
ID : 18-72-00104
Références
Nano Lett. 2015 Nov 11;15(11):7217-24
pubmed: 26502060
Nanoscale. 2018 Sep 20;10(36):17080-17091
pubmed: 30179246
Nanotechnology. 2012 Jul 5;23(26):265402
pubmed: 22699243
Nano Lett. 2019 Jul 10;19(7):4463-4469
pubmed: 31203633
Adv Mater. 2011 Mar 18;23(11):1356-60
pubmed: 21400595
Nat Commun. 2014;5:3221
pubmed: 24488034
Nanoscale Res Lett. 2009 Nov 14;5(2):360-3
pubmed: 20672038
Nat Commun. 2014 Apr 10;5:3655
pubmed: 24718053
ACS Nano. 2010 Oct 26;4(10):6285-91
pubmed: 20919691
Nanotechnology. 2018 Aug 3;29(31):314003
pubmed: 29757753
Nano Lett. 2012 Apr 11;12(4):1912-8
pubmed: 22432446
ACS Nano. 2017 Sep 26;11(9):9405-9412
pubmed: 28872837
Nano Lett. 2013 Mar 13;13(3):917-24
pubmed: 23237482
Nat Commun. 2013;4:1498
pubmed: 23422666
Adv Mater. 2012 Sep 4;24(34):4692-706
pubmed: 22605617
Nanotechnology. 2012 Aug 3;23(30):305703
pubmed: 22751267
Nat Commun. 2019 Jun 26;10(1):2793
pubmed: 31243278
Phys Rev Lett. 2018 Oct 19;121(16):166101
pubmed: 30387660
Nanotechnology. 2012 Mar 16;23(10):105701
pubmed: 22349093
ACS Nano. 2010 Feb 23;4(2):1234-40
pubmed: 20078071
Nano Lett. 2012 Jun 13;12(6):3302-7
pubmed: 22642669
Nanotechnology. 2018 Jan 26;29(4):045602
pubmed: 29135463
Nano Lett. 2010 Apr 14;10(4):1108-12
pubmed: 20192232