FTIR analysis of pyrogallol and phytotoxicity-reductive effect against mercury chloride.


Journal

Environmental geochemistry and health
ISSN: 1573-2983
Titre abrégé: Environ Geochem Health
Pays: Netherlands
ID NLM: 8903118

Informations de publication

Date de publication:
Jun 2021
Historique:
received: 14 11 2019
accepted: 24 05 2020
pubmed: 4 6 2020
medline: 23 6 2021
entrez: 4 6 2020
Statut: ppublish

Résumé

Human activities, especially in industry, have contributed to soil contamination with heavy or toxic metals. The objective of this study was to determine the chelating effect and antioxidant activity of pyrogallol, as well as to evaluate its cytoprotective activity in prokaryotic and eukaryotic models, animal and plant, respectively, against toxic mercury chloride action. Antioxidant activity was determined by DPPH where pyrogallol showed considerable action, chelating even iron ions. For the microbiologic activity assays, microdilution was performed to obtain the minimal inhibitory concentration, minimum bactericidal and minimum fungicide concentration, from which the sub-inhibitory concentrations were determined. The product did not conferred cytoprotection to the tested bacteria and fungi. To evaluate plant cytoprotection, Lactuta sativa seeds were used together with the product at a sub-allelopathic concentration with different HgCl

Identifiants

pubmed: 32488795
doi: 10.1007/s10653-020-00607-1
pii: 10.1007/s10653-020-00607-1
doi:

Substances chimiques

Antioxidants 0
Chelating Agents 0
Iron Chelating Agents 0
Soil Pollutants 0
Pyrogallol 01Y4A2QXY0
Mercuric Chloride 53GH7MZT1R

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2433-2442

Références

Anzecc/Armcanz. (2016). Australian guidelines for water quality monitoring and reporting.
Araújo, A. S. (2008). Síntese e caracterização de complexos com rutênio com ligantes fenólicos. Dissertação (Mestrado em Ciências, Área Química)-Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto.
Atoui, A. K., Mansouri, A., Boskou, G., & Kefalas, P. (2005). Tea and herbal infusions: Their antioxidant activity and phenolic profile Food Chem., 89, 27.
Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120.
Biesaga, M. (2011). Influence of extraction methods on stability of flavonoids. Journal of Chromatography, 1218, 2505–2512.
Biscarini, P., & Nivellini, G. D. (1969). Addition compounds of organic sulphides with mercuric chloride infrared spectra in the solid state. Journal of the Chemical Society, 1, 2206–2210.
Boening, D. W. (2000). Ecological effects, transport and fate of mercury: A general review. Chemosphere, 40, 1335–1351.
BRASIL. (2009). Ministério da Agricultura, Departamento de produção vegetal, divisão de sementes e mudas. Regras para análise de sementes. LANARV/SNAD/MA, Brasília.
Brewer, M. S. (2011). Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Comprehensive Reviews in Food Science and Food Safety, 10, 221–247.
Bukhari, S. B., Memon, S., Mahroof-Tahir, M., & Bhanger, M. I. (2009). Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectr Acta Part A: Molecular and Biomolecular Spectroscopy, 71, 1901–1906.
Carvalho, C. E. V., Cavalcante, M. P. O., Gomes, M. P., Faria, V. V., & Rezende, C. E. (2001). Distribuição de Metais Pesados em Mexilhões (Perna) da Ilha de Santana, Macaé, SE, Brasil. Ecotoxicology and Environmental Safety.
Costa, K. A. D., Ferenz, M., Silveira, S. M., Moura, R., & Mollezi, A. F. (2017). Antifungal agentes: susceptibility test and bioassay. In E. H. Lennette, A. Ballows, W. J. Hausler Jr., & H. J. Shadomy (Eds.), Manual of clinical microbiology (4th ed.). Washington: American Society of Microbiology.
Coutinho, H. D. M., Costa, J. G. M., Lima, E. O., Falcão-Silva, V. S., & Siqueira, J. P., Jr. (2008). Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis and chlorpromazine. Chemotherapy, 54, 328–330.
Coutinho, H. D. M., Martins, G. M. A. B., Morais-Braga, M. F. B., Menezes, I. R. A., et al. (2017). Stryphnodendron rotundifolium Mart. As an adjuvant for the plant germination and development under toxic concentrations of HgCl
Cunha, F. A. B., Pinho, A. I., Santos, J. F. S., Sobral-Souza, C. E., Albuquerque, R. S., Matias, E. F. F., et al. (2016). Cytoprotective effect of Eugenia uniflora L. against the waste contaminant Mercury chloride. Arabian Journal of Chemistry, 18, 4197–4203.
Decandio, C. C., Silva, D. D. E., Costa, M. R. L., Gomes, C. F., Ferreira, M. J. P., et al. (2010). Síntese e caracterização de um complexo de crômio(III) com 3,7-diidroxiflavona. In REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE QUÍMICA, 33. Águas de Lindóia, Anais Águas de Lindóia.
Deguchi, T. G. F. (2006). Estudo do equilíbrio químico de compostos modelo de taninos com íons metálicos para o tratamento de efluentes industriais. Dissertação (Mestrado em Engenharia e Ciência dos materiais)-PIPE, Universidade Federal do Rio Grande do Sul, Porto Alegre.
Falcão, L., & Araújo, Maria Eduarda M. (2013). Tannins characterization in historic leathers by complementary analytical techniques ATR-FTIR, UV–Vis and chemical tests. Journal of Cultural Heritage, 14(6), 499–508.
Figueredo, F. G., Lima, L. F., Morais-Braga, M. F. B., Figueredo, J. G., Pinto, N. B., et al. (2016a). Potential assessment cytoprotective against toxic effect of chloride of mercury and antioxidant Lygodium venustum sw (lygodiaceae). Rev Interfaces, 39, 44–49.
Figueredo, F. G., Lima, L. F., Morais-Braga, M. F. B., Tintino, S. R., Farias, P. A. M., et al. (2016b). Cytoprotective effect of Lygodium venustum Sw. (Lygodiaceae) against mercurium chloride toxicity. Scientifica, 2016, 1–5.
Grant, C. A., Buckley, W. T., Bailey, L. D., & Selles, F. (1998). Cadmium accumulation in crops. Canadian Journal of Plant Science, 78, 1–17.
Gratão, P. L., Polle, A., Lea, P. J., & Azevedo, R. A. (2015). Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology, 32, 481–494.
Haslam, E. (1996). Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. Journal of Natural Products, 59(2), 205–215.
Lange, C. W., Conklin, B. J., & Pierpont, C. G. (1994). Radical superexchange in semiquinone complexes containing diamagnetic metal íons, 3,6-di-tert-butyl-1,2-semiquinoate complexes of zinc(II), cbalt(III), gallium(III) and aluminium(III). Inorganic Chemical, 33, 1276–1283.
Leite, N. F., Sobral-Souza, C. E., Albuquerque, R. S., Pinho, A. I., Cunha, F. B. A., & Coutinho, H. D. M. (2017). Reduction of the toxic effect of mercurium chloride by chelating effect of Psidium brownianum Mart. ex DC. International Biodeterioration and Biodegradation, 111, 538–541.
Leite, N. F., Sobral-Souza, C. E., Lavor, A. K. L. S., Brito, D. I. V., Figuerede, F. F., et al. (2014). Composição fenólica e avaliação da atividade citoprotetora dos extratos de Psidium guajava L. var. pyrifera e Psidium guajava L. var. pomífera. Caderno de Cultura e CiÊncias. Universidade regional do Cariri.
Leite, N. F., Sobral-Souza, C. E., Matias, E. F. F., Alencar, L. B. B., Albuquerque, R. S., Morais-Braga, M. F. B., et al. (2016). Citoprotective effect of Eugenia jambolana and Psidium myrsinites DC. A. against the lipid peroxidation induced by iron II. Acta Toxicológica Argentina, 24, 187–192.
Lima, C. N. F., Valero, T. F., Leite, N. F., Alencar, L. B. B., Matias, E. F. F., Kerntopf, M. R., et al. (2014). Ação protetora de Duguetia furfuracea (A. St.-Hil.) Saff. contra a toxicidade do cloreto de mercúrio em Escherichia coli. Revista Cubana de Plantas Medicinales, 19, 179–188.
Macedo, J. M., Souza, L. G. P., Valenzuela, V. C. T., Oliveira, A., Castilho, R. O., & Jácome, R. L. R. P. (2013). Variação sazonal nos teores de flavonoides, taninos e atividade antioxidante de Davilla rugosa Poir. Revista de Ciências Farmacêuticas Básica e Aplicada, 34, 585–590.
Mensor, L. L., Menezes, F. S., Leitão, G. G., Reis, A. S., Santos, T. C., Coube, C. S., et al. (2001). Screening of brazilian plant extracts for antioxidant activity by the use of DPPH free radical method. Phytotherapy Research, 15, 127–130.
Mohammed-ZieglerI, I., & Billes, F. (2002). Vibrational Spectroscopic calculations on pyrogalol and gallic acid. Journal of Molecular Structure, 618, 259–265.
Nascimento, E. M. M., Rodrigues, F. F. G., Costa, W. D., Boligon, A. A., Sousa, E. O., et al. (2017). In vitro evaluation of antioxidant properties of fruit from Malpighia glabra (Malpighiaceae) at different stages of maturation. Food and Chemical Toxicology, 119, 457–463.
Ness, A. R., & Powles, J. W. (1997). Fruit and vegetables, and cardiovascular disease: A review. International Journal of Epidemiology, 26, 1–13.
Paula, R. A. O., Santos, E. S., Pinto, L. F., Paula, F. B. A., Rodrigues, M. R., Salles, B. C. C., et al. (2015). Determinação da atividade antioxidante in vitro das bebidas de café e chás verde e preto. Revista de Ciências Farmacêuticas Básica e Aplicada, 36, 167–171.
Puntel, R. L., Nogueira, C. W., & Rocha, J. B. (2005). Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochemical Research, 30(2), 225–235.
Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Science, 180, 169–181.
Rodrigues, O. G., Angélico, E. C., Costa, J. G. M., Lucena, M. F. A., Neto, V. Q., et al. (2017). Avaliação da atividade antioxidante dos extratos botânicos de Croton Heliotrpiifolius Kunth. e Croton blanchetianus Baill: Resultados Preliminares. Agropecuária Científica no Semiárido Centro de Saúde e Tecnologia Rural, 12, 237–241.
Settle, F. A. (1997). Handbook of instrumental techniques for analytical chemistry. Upper Saddle River: Prentice Hall.
Shadomy, S., Espinel-Ingroff, A., & Cartwright, R. (1985). Laboratory studies with antifungal agentes: susceptibility test and bioassay. In E. H. Lennette, A. Ballows, W. J. Hausler Jr., & H. J. Shadomy (Eds.), Manual of clinical microbiology (4th ed.). Washington: American Society of Microbiology.
Sharma, P., & Singh, R. P. (2013). Evaluation of antioxidant activity in foods with special reference to TEAC method. American Journal of Food Technology, 8, 83–101.
Silverstein, R. M., Bassler, G. C., & Morrill, T. C. (2005). Spectrometric identification of organic compounds (7th ed.). New York: ACS Publications.
Soares, S. E. (2002). Ácidos fenólicos como antioxidantes Phenolic acids as antioxidants. Revista de Nutrição, 15, 71–81.
Soares, G. L. G., & Vieira, T. R. (2000). Inibição da germinação e do crescimento radicular de alface (cv. “Grand Rapids”) por extratos aquosos de cinco espécies de Gleicheniaceae. Revista Floresta e Ambiente, 7, 180–197.
Sobral-Souza, C. E., Leite, N. F., Cunha, F. A. B., Pinho, A. I., Albuquerque, R. S., Carneiro, J. N. P., et al. (2014a). Cytoprotective effect against mercury chloride and bioinsecticidal activity of Eugenia jambolana Lam. Arabian Journal of Chemistry, 7, 165–170.
Sobral-Souza, C. E., Leite, N. F., Cunha, F. A. B., Pinho, A. I., Costa, J. G. M., & Coutinho, H. D. M. (2014b). Evaluation of cytoprotective and antioxidant activity of the extracts of Eugenia uniflora Lineau e Psidium Sobraleanum Proença & Landrum against heavy metals. Revista Ciencias de la Salud, 12, 401–409.
Solomons, T. W., Graham, F., & Craig, B. (2009). Química orgânica (9th ed., pp. 71–81). Rio de Janeiro: LTC.
Souza, J. R., & Barbosa, A. C. (2000). Contaminação por mercúrio e o caso da Amazônia. Química Nova na Escola, 12, 3–7.
Souza, R. F. V., & Giovani, W. F. (2005). Syntesis, spectral and electrochemical properties of Al(III) and Zn(II) complexes with flavonoids. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 61, 1985–1990.
Stoclet, J. C., et al. (2004). Vascular protection by dietary polyphenols. European Journal of Pharmacology, 500, 299–313.
Tsutiya, M.T. (1999). Metais pesados: O principal fator limitante para o uso agrícola de biossólidos das estações de tratamento de esgotos. In XX Congresso Brasileiro de Engenharia Sanitária e Ambiental, Rio de Janeiro. Anais. Rio de Janeiro: ABES—Associação Brasileira de Engenharia Sanitária e Ambiental, pp 753–761.
Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., & Telser, J. (2004). Role of oxygen radicals in DNA damage and cancer incidence. Molecular and Cellular Biology, 266, 37–56.
Valle, L. A. R. (2012). Avaliação de elementos-traço em fertilizantes e corretivos. Dissertação (Pós-Graduação em Ciência do Solo—Área de concentração em Recursos Ambientais e Uso da Terra)—Universidade Federal de Lavras, Lavras.
Verza, S. G. (2006). Avaliação das variáveis analíticas de métodos de determinação do teor de taninos totais baseados na formação de complexos com substâncias proteicas e derivados da polivinilpirrolidona. Dissertação (Mestrado em Ciências Farmacêuticas)-Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre.
Vieira, L. M., Castro, C. F. S., Dias, A. L. B., & Silva, A. R. (2015). Fenóis totais, atividade antioxidante e inibição da enzima tirosinase de extratos de Myracrodruon urundeuva Fr. All. (Anacardiaceae) (pp. 521–527). Campinas: The Revista Brasileira de Plantas Medicinais.

Auteurs

Janaina E Rocha (JE)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Tássia T A M Guedes (TTAM)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Camila F Bezerra (CF)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Maria do S Costa (MDS)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Fabia F Campina (FF)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Thiago S de Freitas (TS)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Amanda K Sousa (AK)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Celestina E Sobral Souza (CE)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Maria K N Silva (MKN)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Yedda M Lobo (YM)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil.

Francisco N Pereira-Junior (FN)

Federal University of Cariri, Juazeiro do Norte, CE, Brazil.

João H da Silva (JH)

Federal University of Cariri, Juazeiro do Norte, CE, Brazil.

Irwin R A Menezes (IRA)

Laboratory of Pharmacology and Molecular Chemistry, Regional University of Cariri, Crato, CE, Brazil.

Raimundo N P Teixeira (RNP)

Laboratory of Research in Natural Products, Regional University of Cariri, Crato, CE, Brazil.

Aracélio V Colares (AV)

University Center UNILEAO, Juazeiro do Norte, CE, Brazil.

Henrique D M Coutinho (HDM)

Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Av. Cel. Antônio Luiz, 1161. Pimenta, Crato, CE, 63105-000, Brazil. hdmcoutinho@gmail.com.

Articles similaires

Vancomycin Polyesters Anti-Bacterial Agents Models, Theoretical Drug Liberation
Fragaria Light Plant Leaves Osmosis Stress, Physiological
Biofilms Candida albicans Quorum Sensing Candida glabrata Menthol
Nigeria Environmental Monitoring Solid Waste Waste Disposal Facilities Refuse Disposal

Classifications MeSH