Droplet digital polymerase chain reaction-based quantification of circulating microRNAs using small RNA concentration normalization.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
02 06 2020
Historique:
received: 20 12 2019
accepted: 12 05 2020
entrez: 4 6 2020
pubmed: 4 6 2020
medline: 18 12 2020
Statut: epublish

Résumé

Quantification of plasma microRNAs (miRNAs) as non-invasive disease biomarkers is subject to multiple technical variabilities. This study aimed to develop an optimized protocol for miRNA quantification from rodent plasma. We hypothesized that a fixed small RNA concentration input for reverse transcription (RT) reaction will provide better miRNA quantification than a fixed RNA volume input. For this, tail-vein plasma was collected from 30 naïve, adult male Sprague-Dawley rats. Plasma hemolysis was measured with NanoDrop-1000 and Denovix DS-11 spectrophotometers. Plasma was then pooled, and RNA was extracted from 50-μl, 100-μl or 200-μl pool aliquots. Small RNA concentration was measured with Qubit miRNA assay. A fixed RNA volume (un-normalized) or a fixed small RNA concentration was used for RT (concentration-normalized). The method was setup with miR-23a-3p and validated with miR-103a-3p and miR-451a. Hemolysis measurements from Denovix and NanoDrop strongly correlated. Qubit revealed increased small RNA concentrations with increasing starting plasma volumes. With concentration-normalization, miRNA levels from 100-µl and 200-µl plasma volume groups mostly normalized to the level of the 50-µl in ddPCR. Our results indicate that miRNA quantification with ddPCR should be performed with small RNA concentration-normalization to minimize variations in eluted RNA concentrations occuring during RNA extraction.

Identifiants

pubmed: 32488181
doi: 10.1038/s41598-020-66072-z
pii: 10.1038/s41598-020-66072-z
pmc: PMC7265372
doi:

Substances chimiques

Circulating MicroRNA 0
MIRN103 microRNA, rat 0
MIRN23 microRNA, rat 0
MIRN451A microRNA, rat 0
MicroRNAs 0
Edetic Acid 9G34HU7RV0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

9012

Références

Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
doi: 10.1016/S0092-8674(04)00045-5
Kamal, A. & Mushtaq, M. G. & H Greig, N. Current update on synopsis of miRNA dysregulation in neurological disorders. CNS Neurol. Disord. Targets (Formerly Curr. Drug Targets-CNS Neurol. Disord. 14,, 492–501 (2015).
doi: 10.2174/1871527314666150225143637
Iorio, M. V. & Croce, C. M. Causes and consequences of microRNA dysregulation. Cancer J. 18, 215 (2012).
pubmed: 22647357 pmcid: 3528102 doi: 10.1097/PPO.0b013e318250c001
Tan, L., Yu, J.-T. & Tan, L. Causes and consequences of microRNA dysregulation in neurodegenerative diseases. Mol. Neurobiol. 51, 1249–1262 (2015).
pubmed: 24973986 doi: 10.1007/s12035-014-8803-9
Ardekani, A. M. & Naeini, M. M. The role of microRNAs in human diseases. Avicenna. J. Med. Biotechnol. 2, 161 (2010).
Sanz-Rubio, D. et al. Stability of circulating Exosomal miRNAs in healthy subjects. Sci. Rep. 8 (2018).
Mitchell, P. S. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. 105, 10513–10518 (2008).
pubmed: 18663219 doi: 10.1073/pnas.0804549105
Glinge, C. et al. Stability of circulating blood-based microRNAs–pre-analytic methodological considerations. Plos one 12, e0167969 (2017).
pubmed: 28151938 pmcid: 5289450 doi: 10.1371/journal.pone.0167969
McDonald, J. S., Milosevic, D., Reddi, H. V., Grebe, S. K. & Algeciras-Schimnich, A. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin. Chem. 57, 833–840 (2011).
pubmed: 21487102 doi: 10.1373/clinchem.2010.157198
Sourvinou, I. S., Markou, A. & Lianidou, E. S. Quantification of circulating miRNAs in plasma: effect of preanalytical and analytical parameters on their isolation and stability. J. Mol. Diagnostics 15, 827–834 (2013).
doi: 10.1016/j.jmoldx.2013.07.005
Etheridge, A., Lee, I., Hood, L., Galas, D. & Wang, K. Extracellular microRNA: a new source of biomarkers. Mutat. Res. Mol. Mech. Mutagen. 717, 85–90 (2011).
doi: 10.1016/j.mrfmmm.2011.03.004
Ajit, S. K. Circulating microRNAs as biomarkers, therapeutic targets, and signaling molecules. Sensors 12, 3359–3369 (2012).
pubmed: 22737013 doi: 10.3390/s120303359
Kirschner, M. B. et al. Haemolysis during sample preparation alters microRNA content of plasma. Plos one 6, e24145 (2011).
pubmed: 21909417 pmcid: 3164711 doi: 10.1371/journal.pone.0024145
Garcia-Elias, A. et al. Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs. Sci. Rep. 7, 7725 (2017).
pubmed: 28798363 pmcid: 5552704 doi: 10.1038/s41598-017-08134-3
Schwarzenbach, H., da Silva, A. M., Calin, G. & Pantel, K. Data normalization strategies for microRNA quantification. Clin. Chem. 61, 1333–1342 (2015).
pubmed: 26408530 pmcid: 4890630 doi: 10.1373/clinchem.2015.239459
Blondal, T. et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 59, S1–S6 (2013).
pubmed: 23036329 doi: 10.1016/j.ymeth.2012.09.015
Shah, J. S., Soon, P. S. & Marsh, D. J. Comparison of methodologies to detect low levels of hemolysis in serum for accurate assessment of serum microRNAs. Plos one 11, e0153200 (2016).
pubmed: 27054342 pmcid: 4824492 doi: 10.1371/journal.pone.0153200
van Vliet, E. A. et al. Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs. Epilepsia 58 (2017).
Kamnaksh, A. et al. Harmonization of pipeline for preclinical multicenter plasma protein and miRNA biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Res. 149 (2019).
pubmed: 30553097 doi: 10.1016/j.eplepsyres.2018.11.009
Lee, I., Baxter, D., Lee, M. Y., Scherler, K. & Wang, K. The importance of standardization on analyzing circulating RNA. Mol. Diagn. Ther. 21, 259–268 (2017).
pubmed: 28039578 pmcid: 5426982 doi: 10.1007/s40291-016-0251-y
Farina, N. H. et al. Standardizing analysis of circulating microRNA: clinical and biological relevance. J. Cell. Biochem. 115, 805–811 (2014).
pubmed: 24357537 pmcid: 3992702 doi: 10.1002/jcb.24745
Kirschner, M. B., van Zandwijk, N. & Reid, G. Cell-free microRNAs: potential biomarkers in need of standardized reporting. Front. Genet. 4, 56 (2013).
pubmed: 23626598 pmcid: 3630323
Poel, D., Buffart, T. E., Oosterling-Jansen, J., Verheul, H. M. W. & Voortman, J. Evaluation of several methodological challenges in circulating miRNA qPCR studies in patients with head and neck cancer. Exp. Mol. Med. 50, e454 (2018).
pubmed: 29520111 pmcid: 5898892 doi: 10.1038/emm.2017.288
Ramón-Núñez, L. A. et al. Comparison of protocols and RNA carriers for plasma miRNA isolation. Unraveling RNA carrier influence on miRNA isolation. Plos one 12, e0187005 (2017).
pubmed: 29077772 pmcid: 5659774 doi: 10.1371/journal.pone.0187005
Campomenosi, P. et al. A comparison between quantitative PCR and droplet digital PCR technologies for circulating microRNA quantification in human lung cancer. BMC Biotechnol. 16, 60 (2016).
pubmed: 27538962 pmcid: 4991011 doi: 10.1186/s12896-016-0292-7
Kroh, E. M., Parkin, R. K., Mitchell, P. S. & Tewari, M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50, 298–301 (2010).
pubmed: 20146939 pmcid: 4186708 doi: 10.1016/j.ymeth.2010.01.032
Mumford, S. et al. Circulating microRNA biomarkers in melanoma: tools and challenges in personalised medicine. Biomolecules 8, 21 (2018).
pmcid: 6022922 doi: 10.3390/biom8020021
Wang, K. et al. Comparing the MicroRNA spectrum between serum and plasma. Plos one 7, e41561 (2012).
pubmed: 22859996 pmcid: 3409228 doi: 10.1371/journal.pone.0041561
Siracusa, J., Koulmann, N., Bourdon, S., Goriot, M.-E. & Banzet, S. Circulating miRNAs as biomarkers of acute muscle damage in rats. Am. J. Pathol. 186, 1313–1327 (2016).
pubmed: 26952641 doi: 10.1016/j.ajpath.2016.01.007
How pipetting choice and volume affect results of nucleic acid quantitation. 8–11 (2018).
Vuokila N, Das Gupta S, Huusko R, Tohka J, Puhakka N., P. A. Elevated acute plasma miR-124-3p level relates to evolution of larger cortical lesion area after traumatic brain injury. Neuroscience, https://doi.org/10.1016/j.neuroscience.2020.02.045
pubmed: 32142864 doi: 10.1016/j.neuroscience.2020.02.045
Miotto, E. et al. Quantification of circulating miRNAs by droplet digital PCR: comparison of EvaGreen-and TaqMan-based chemistries. (2014).
doi: 10.1158/1055-9965.EPI-14-0503
Rochon, J., Gondan, M. & Kieser, M. To test or not to test: Preliminary assessment of normality when comparing two independent samples. BMC Med. Res. Methodol. 12, 81 (2012).
pubmed: 22712852 pmcid: 3444333 doi: 10.1186/1471-2288-12-81
Oliveros, J. C. VENNY. An interactive tool for comparing lists with Venn Diagrams. http//bioinfogp. cnb. csic. es/tools/venny/index. html (2007).
Kim, B. & Choi, S. Smart pipette and microfluidic pipette tip for blood plasma separation. Small 12, 190–197 (2016).
pubmed: 26568206 doi: 10.1002/smll.201502719
Deben, C. et al. Expression analysis on archival material revisited: isolation and quantification of RNA extracted from FFPE samples. Diagnostic Mol. Pathol. 22, 59–64 (2013).
doi: 10.1097/PDM.0b013e318269de3b
Mauger, F., Dulary, C., Daviaud, C., Deleuze, J.-F. & Tost, J. Comprehensive evaluation of methods to isolate, quantify, and characterize circulating cell-free DNA from small volumes of plasma. Anal. Bioanal. Chem. 407, 6873–6878 (2015).
pubmed: 26123439 doi: 10.1007/s00216-015-8846-4
Li, X., Ben-Dov, I. Z., Mauro, M. & Williams, Z. Lowering the quantification limit of the Qubit TM RNA HS Assay using RNA spike-in. BMC Mol. Biol. 16, 9 (2015).
pubmed: 25943882 pmcid: 4431604 doi: 10.1186/s12867-015-0039-3
Ge, Q. et al. miRNA in plasma exosome is stable under different storage conditions. Molecules 19, 1568–1575 (2014).
pubmed: 24473213 pmcid: 6271968 doi: 10.3390/molecules19021568
Wright, K., de Silva, K., Purdie, A. C. & Plain, K. M. Comparison of methods for miRNA isolation and quantification from ovine plasma. Sci. Rep. 10, 1–11 (2020).
doi: 10.1038/s41598-020-57659-7
Andreasen, D. et al. Improved microRNA quantification in total RNA from clinical samples. Methods 50, S6–S9 (2010).
pubmed: 20215018 doi: 10.1016/j.ymeth.2010.01.006
El-Khoury, V., Pierson, S., Kaoma, T., Bernardin, F. & Berchem, G. Assessing cellular and circulating miRNA recovery: the impact of the RNA isolation method and the quantity of input material. Sci. Rep. 6, 19529 (2016).
pubmed: 26787294 pmcid: 4726450 doi: 10.1038/srep19529
McAlexander, M. A., Phillips, M. J. & Witwer, K. W. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from cerebrospinal fluid. Front. Genet. 4, 83 (2013).
pubmed: 23720669 pmcid: 3655275 doi: 10.3389/fgene.2013.00083
Hindson, C. M. et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 10, 1003 (2013).
pubmed: 23995387 pmcid: 4118677 doi: 10.1038/nmeth.2633
Demeke, T. & Dobnik, D. Critical assessment of digital PCR for the detection and quantification of genetically modified organisms. Anal. Bioanal. Chem. 410, 4039–4050 (2018).
pubmed: 29574561 pmcid: 6010488 doi: 10.1007/s00216-018-1010-1
Roncon, P. et al. MicroRNA profiles in hippocampal granule cells and plasma of rats with pilocarpine-induced epilepsy–comparison with human epileptic samples. Sci. Rep. 5, 14143 (2015).
pubmed: 26382856 pmcid: 4585664 doi: 10.1038/srep14143
Xie, J. X. et al. MicroRNA profiling in kidney disease: plasma versus plasma-derived exosomes. Gene 627, 1–8 (2017).
pubmed: 28587849 pmcid: 5534180 doi: 10.1016/j.gene.2017.06.003
Hudecova, I. Digital PCR analysis of circulating nucleic acids. Clin. Biochem. 48, 948–956 (2015).
pubmed: 25828047 doi: 10.1016/j.clinbiochem.2015.03.015
Ma, J., Li, N., Guarnera, M. & Jiang, F. Quantification of plasma miRNAs by digital PCR for cancer diagnosis. Biomark. Insights 8, BMI–S13154 (2013).
doi: 10.4137/BMI.S13154
Hayden, R. T. et al. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J. Clin. Microbiol. 51, 540–546 (2013).
pubmed: 23224089 pmcid: 3553899 doi: 10.1128/JCM.02620-12
Binderup, H. G. et al. Quantification of microRNA levels in plasma–Impact of preanalytical and analytical conditions. Plos one 13, e0201069 (2018).
pubmed: 30024941 pmcid: 6053236 doi: 10.1371/journal.pone.0201069
Redshaw, N. et al. A comparison of miRNA isolation and RT-qPCR technologies and their effects on quantification accuracy and repeatability. Biotechniques 54, 155–164 (2013).
pubmed: 23477383 doi: 10.2144/000114002
Jensen, S. G. et al. Evaluation of two commercial global miRNA expression profiling platforms for detection of less abundant miRNAs. BMC Genomics 12, 435 (2011).
pubmed: 21867561 pmcid: 3184117 doi: 10.1186/1471-2164-12-435
Peltier, H. J. & Latham, G. J. Normalization of microRNA expression levels in quantitative RT-PCR assays: identification of suitable reference RNA targets in normal and cancerous human solid tissues. Rna 14, 844–852 (2008).
pubmed: 18375788 pmcid: 2327352 doi: 10.1261/rna.939908

Auteurs

Shalini Das Gupta (S)

A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland.

Xavier Ekolle Ndode-Ekane (XE)

A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland.

Noora Puhakka (N)

A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland. noora.puhakka@uef.fi.

Asla Pitkänen (A)

A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FI-70211, Kuopio, Finland.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH