Evidence of non-stationary relationships between climate and forest responses: Increased sensitivity to climate change in Iberian forests.
Spanish Forest Inventory
above-ground forest productivity
climate change
forest demography
forest structure
multigroup structural equation modelling
non-stationarity
temporal trends
Journal
Global change biology
ISSN: 1365-2486
Titre abrégé: Glob Chang Biol
Pays: England
ID NLM: 9888746
Informations de publication
Date de publication:
Sep 2020
Sep 2020
Historique:
received:
07
11
2019
revised:
27
04
2020
accepted:
16
05
2020
pubmed:
2
6
2020
medline:
30
1
2021
entrez:
2
6
2020
Statut:
ppublish
Résumé
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non-stationary (i.e. non-time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above-ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above-ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non-stationary relationships between climate, forest structure and demography. Above-ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.
Substances chimiques
Water
059QF0KO0R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5063-5076Subventions
Organisme : FPI fellowship of the Department of Education of the Basque Government
Organisme : Ministerio de Ciencia, Innovación y Universidades
ID : RTI2018-096884-B-C32
Organisme : Fundación BBVA
Organisme : REMEDINAL4 (Madrid Government, Spain)
ID : TE-CM S2018/EMT-4338
Organisme : REMEDINAL3 (Madrid Government, Spain)
ID : S-2013/MAE2719
Organisme : Complutense University of Madrid
Informations de copyright
© 2020 John Wiley & Sons Ltd.
Références
Allen, C. D., Breshears, D. D., & McDowell, N. G. (2015). On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6, 129. https://doi.org/10.1890/ES15-00203.1
Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., … Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684. https://doi.org/10.1016/J.FORECO.2009.09.001
Anderegg, W. R., Kane, J. M., & Anderegg, L. D. (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30-36. https://doi.org/10.1038/nclimate1635
Anderegg, W. R., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F., Choat, B., & Jansen, S. (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029. https://doi.org/10.1073/pnas.1525678113
Anderegg, W. R. L., Schwalm, C., Biondi, F., Camarero, J. J., Koch, G., Litvak, M., … Pacala, S. (2015). Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science, 349, 528-532. https://doi.org/10.1126/science.aab1833
Barton, K. (2019). MuMIn: Multi-model inference. Retrieved from https://cran.r-project.org/package=MuMIn
Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, https://doi.org/10.18637/jss.v067.i01
Bennett, A. C., McDowell, N. G., Allen, C. D., & Anderson-Teixeira, K. J. (2015). Larger trees suffer most during drought in forests worldwide. Nature Plants, 1, 15139. https://doi.org/10.1038/nplants.2015.139
Blondel, J. (2006). The ’design’ of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period. Human Ecology, 34, 713-729. https://doi.org/10.1007/s10745-006-9030-4
Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
Bradford, J. B., & Bell, D. M. (2017). A window of opportunity for climate-change adaptation: Easing tree mortality by reducing forest basal area. Frontiers in Ecology and the Environment, 15, 11-17. https://doi.org/10.1002/fee.1445
Braumandl, T., & Holt, R. (2000). Refining definitions of old growth to aid in locating old-growth forest reserves. In C. Hollstedt, K. Sutherland, & T. Innes (Eds.), From science to management and back: A science forum for southern interior ecosystems of British Columbia. Kamloops, BC: Southern Interior Forest Extension; Research Partnership.
Breheny, P., & Burchett, W. (2017). Visualizing regression models using visreg. The R Journal, 9, 56-71.
Brienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., … Zagt, R. J. (2015). Long-term decline of the Amazon carbon sink. Nature, 519, 344-348. https://doi.org/10.1038/nature14283
Brunet-Navarro, P., Sterck, F. J., Vayreda, J., Martinez-Vilalta, J., & Mohren, G. M. J. (2016). Self-thinning in four pine species: An evaluation of potential climate impacts. Annals of Forest Science, 73, 1025-1034. https://doi.org/10.1007/s13595-016-0585-y
Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York: Springer-Verlag.
Carnicer, J., Barbeta, A., Sperlich, D., Coll, M., & Peñuelas, J. (2013). Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Frontiers in Plant Science, 4, 409. https://doi.org/10.3389/fpls.2013.00409
Carnicer, J., Coll, M., Ninyerola, M., Pons, X., Sanchez, G., & Peñuelas, J. (2011). Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proceedings of the National Academy of Sciences of the United States of America, 108, 1474-1478. https://doi.org/10.1073/pnas.1010070108
Carnicer, J., Coll, M., Pons, X., Ninyerola, M., Vayreda, J., & Peñuelas, J. (2014). Large-scale recruitment limitation in Mediterranean pines: The role of Quercus ilex and forest successional advance as key regional drivers. Global Ecology and Biogeography, 23, 371-384. https://doi.org/10.1111/geb.12111
Charru, M., Seynave, I., Hervé, J. C., Bertrand, R., & Bontemps, J. D. (2017). Recent growth changes in Western European forests are driven by climate warming and structured across tree species climatic habitats. Annals of Forest Science, 74, 33. https://doi.org/10.1007/s13595-017-0626-1
Chen, H. Y., & Luo, Y. (2015). Net aboveground biomass declines of four major forest types with forest ageing and climate change in western Canada’s boreal forests. Global Change Biology, 21, 3675-3684. https://doi.org/10.1111/gcb.12994
Costello, A., Abbas, M., Allen, A., Ball, S., Bell, S., Bellamy, R., … Patterson, C. (2009). Managing the health effects of climate change. The Lancet, 373, 1693-1733. https://doi.org/10.1016/s0140-6736(09)60935-1
Cruz-Alonso, V., Ruiz-Benito, P., Villar-Salvador, P., & Rey-Benayas, J. M. (2019). Long-term recovery of multifunctionality in Mediterranean forests depends on restoration strategy and forest type. Journal of Applied Ecology, 56, 745-757. https://doi.org/10.1111/1365-2664.13340
De Castro, M., Martin-Vide, J., & Alonso, S. (2005). El clima de España: Pasado, presente y escenarios de clima para el siglo XXI. In J. M. Moreno (Ed.), Evaluación preliminar de los impactos en España por efecto del cambio climático (pp. 1-64). Madrid, Spain: Ministerio de Medio Ambiente.
Díaz, S., Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529, 167-171. https://doi.org/10.1038/nature16489
Doelman, J. C., Stehfest, E., Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., … Lucas, P. L. (2020). Afforestation for climate change mitigation: Potentials, risks and trade-offs. Global Change Biology, 26, 1576-1591. https://doi.org/10.1111/gcb.14887
FAO. (2013). State of Mediterranean forest 2013. Rome, Italy: Food and Agriculture Organization of the United Nations.
FAO. (2020). Global Forest Resources Assessment 2020 - Key findings. Rome, Italy: Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/ca8753en
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315. https://doi.org/10.1002/joc.5086
Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., … Zscheischler, J. (2015). Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Global Change Biology, 21, 2861-2880. https://doi.org/10.1111/gcb.12916
Gazol, A., & Camarero, J. (2012). The performance of Mediterranean subshrubs depends more on microsite than on regional climate conditions. Journal of Vegetation Science, 23, 1062-1070. https://doi.org/10.2307/23322311
Gazol, A., Camarero, J. J., Vicente-Serrano, S. M., Sánchez-Salguero, R., Gutiérrez, E., de Luis, M., … Galván, J. D. (2018). Forest resilience to drought varies across biomes. Global Change Biology, 24, 2143-2158. https://doi.org/10.1111/gcb.14082
Grace, J. B. (2006). Structural equation modeling and natural systems. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511617799
Greenwood, S., Ruiz-Benito, P., Martínez-Vilalta, J., Lloret, F., Kitzberger, T., Allen, C. D., … Jump, A. S. (2017). Tree mortality across biomes is promoted by drought intensity, lower wood density and higher specific leaf area. Ecology Letters, 20, 539-553. https://doi.org/10.1111/ele.12748
Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114, 11645-11650. https://doi.org/10.1073/pnas.1710465114
Instituto Geográfico Nacional. (2019). España en mapas. Una síntesis geográfica. In J. Sancho Comíns (dir.) (Ed.), Serie Compendios del Atlas Nacional de España (ANE). Madrid: Centro Nacional de Información Geográfica. Retrieved from http://www.ign.es/web/ign/portal/espana-en-mapas
IPBES. (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. In S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo, M. Guèze, J. Agard, & C. N. Zayas, Eds. Bonn, Germany: IPBES Secretariat.
IPCC. (2018). Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. Shukla, … T. Waterfield (Eds.). In press.
Jacobson, T. A., Kler, J. S., Hernke, M. T., Braun, R. K., Meyer, K. C., & Funk, W. E. (2019). Direct human health risks of increased atmospheric carbon dioxide. Nature Sustainability, 2, 691-701. https://doi.org/10.1038/s41893-019-0323-1
Johnson, E. A., & Miyanishi, K. (2008). Testing the assumptions of chronosequences in succession. Ecology Letters, 11, 419-431. https://doi.org/10.1111/j.1461-0248.2008.01173.x
Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., … Turner, M. G. (2016). Changing disturbance regimes, ecological memory, and forest resilience. Frontiers in Ecology and the Environment, 14, 369-378. https://doi.org/10.1002/fee.1311
Jump, A. S., Ruiz-Benito, P., Greenwood, S., Allen, C. D., Kitzberger, T., Fensham, R., … Lloret, F. (2017). Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Global Change Biology, 23, 3742-3757. https://doi.org/10.1111/gcb.13636
Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., … Westoby, M. (2016). Plant functional traits have globally consistent effects on competition. Nature, 529, 204-207. https://doi.org/10.1038/nature16476
Lecina-Diaz, J., Alvarez, A., Regos, A., Drapeau, P., Paquette, A., Messier, C., & Retana, J. (2018). The positive carbon stocks-biodiversity relationship in forests: Co-occurrence and drivers across five subclimates. Ecological Applications, 28, 1481-1493. https://doi.org/10.1002/eap.1749
Linares, J. C., Camarero, J. J., & Carreira, J. A. (2009). Interacting effects of changes in climate and forest cover on mortality and growth of the southernmost European fir forests. Global Ecology and Biogeography, 18, 485-497. https://doi.org/10.1111/j.1466-8238.2009.00465.x
Lloret, F., Escudero, A., Iriondo, J. M., Martínez-Vilalta, J., & Valladares, F. (2012). Extreme climatic events and vegetation: The role of stabilizing processes. Global Change Biology, 18, 797-805. https://doi.org/10.1111/j.1365-2486.2011.02624.x
Luo, Y., Chen, H. Y. H., McIntire, E. J. B., & Andison, D. W. (2019). Divergent temporal trends of net biomass change in western Canadian boreal forests. Journal of Ecology, 107, 69-78. https://doi.org/10.1111/1365-2745.13033
McDowell, N. G., & Allen, C. D. (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669-672. https://doi.org/10.1038/nclimate2641
McGrath, M. J., Luyssaert, S., Meyfroidt, P., Kaplan, J. O., Bürgi, M., Chen, Y., … Valade, A. (2015). Reconstructing European forest management from 1600 to 2010. Biogeosciences, 12, 4291-4316. https://doi.org/10.5194/bg-12-4291-2015
McIntyre, P. J., Thorne, J. H., Dolanc, C. R., Flint, A. L., Flint, L. E., Kelly, M., & Ackerly, D. D. (2015). Twentieth-century shifts in forest structure in California: Denser forests, smaller trees, and increased dominance of oaks. Proceedings of the National Academy of Sciences of the United States of America, 112, 1458-1463. https://doi.org/10.1073/pnas.1410186112
Millennium Ecosystem Assessment. (2005). Ecosystem and human well-being: Biodiversity synthesis. Washington, DC: World Resources Institute.
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4, 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J., … Méndez-Alonzo, R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 115, 7551-7556. https://doi.org/10.1073/pnas.1721728115
Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988-993. https://doi.org/10.1126/science.1201609
Pasho, E., Camarero, J. J., de Luis, M., & Vicente-Serrano, S. M. (2011). Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agricultural and Forest Meteorology, 151, 1800-1811. https://doi.org/10.1016/j.agrformet.2011.07.018
Peng, C., Ma, Z., Lei, X., Zhu, Q., Chen, H., Wang, W., … Zhou, X. (2011). A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nature Climate Change, 1, 467-471. https://doi.org/10.1038/nclimate1293
Perring, M. P., Bernhardt-Römermann, M., Baeten, L., Midolo, G., Blondeel, H., Depauw, L., … Verheyen, K. (2018). Global environmental change effects on plant community composition trajectories depend upon management legacies. Global Change Biology, 24, 1722-1740. https://doi.org/10.1111/gcb.14030
Pinheiro, J., & Bates, D. (2006). Mixed-effects models in S and S-PLUS, New York, NY: Springer Science & Business Media.
Plieninger, T., Pulido, F. J., & Konold, W. (2003). Effects of land-use history on size structure of holm oak stands in Spanish dehesas: implications for conservation and restoration. Environmental Conservation, 30(1), 61-70. https://doi.org/10.1017/S0376892903000055
Poyatos, R., Latron, J., & Llorens, P. (2003). Land use and land cover change after agricultural abandonment. Mountain Research and Development, 23, 362-368. https://doi.org/10.1659/0276-4741(2003)023[0362:lualcc]2.0.co;2
Pugh, T. A., Lindeskog, M., Smith, B., Poulter, B., Arneth, A., Haverd, V., & Calle, L. (2019). Role of forest regrowth in global carbon sink dynamics. Proceedings of the National Academy of Sciences of the United States of America, 116, 4382-4387. https://doi.org/10.1073/pnas.1810512116
Pulido, F. J., Díaz, M., & Hidalgo De Trucios, S. J. (2001). Size structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: Effects of agroforestry use on their long-term sustainability. Forest Ecology and Management, 146, 1-13. https://doi.org/10.1016/S0378-1127(00)00443-6
R Core Team. (2019). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.r-project.org/
Rautiainen, A., Wernick, I., Waggoner, P. E., Ausubel, J. H., & Kauppi, P. E. (2011). A national and international analysis of changing forest density. PLoS One, 6, e19577. https://doi.org/10.1371/journal.pone.0019577
Rosseel, Y. (2012). lavaan: An r package for structural equation modeling. Journal of Statistical Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02
Rothman, D. H. (2019). Characteristic disruptions of an excitable carbon cycle. Proceedings of the National Academy of Sciences of the United States of America, 116, 14813-14822. https://doi.org/10.1073/pnas.1905164116
Ruiz-Benito, P., Gómez-Aparicio, L., & Zavala, M. A. (2012). Large-scale assessment of regeneration and diversity in Mediterranean planted pine forests along ecological gradients. Diversity and Distributions, 18, 1092-1106. https://doi.org/10.1111/j.1472-4642.2012.00901.x
Ruiz-Benito, P., Lines, E. R., Gómez-Aparicio, L., Zavala, M. A., & Coomes, D. A. (2013). Patterns and drivers of tree mortality in Iberian forests: Climatic effects are modified by competition. PLoS One, 8, e56843. https://doi.org/10.1371/journal.pone.0056843
Ruiz-Benito, P., Madrigal-González, J., Ratcliffe, S., Coomes, D. A., Kändler, G., Lehtonen, A., … Zavala, M. A. (2014). Stand structure and recent climate change constrain stand basal area change in European forests: A comparison across boreal, temperate, and Mediterranean biomes. Ecosystems, 17, 1439-1454. https://doi.org/10.1007/s10021-014-9806-0
Ruiz-Benito, P., Madrigal-González, J., Young, S., Mercatoris, P., Cavin, L., Huang, T.-J., … Jump, A. S. (2015). Climatic stress during stand development alters the sign and magnitude of age-related growth responses in a subtropical mountain pine. PLoS One, 10, e0126581. https://doi.org/10.1371/journal.pone.0126581
Ruiz-Benito, P., Ratcliffe, S., Zavala, M. A., Martínez-Vilalta, J., Vilà-Cabrera, A., Lloret, F., … Jump, A. S. (2017). Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biology, 23, 4162-4176. https://doi.org/10.1111/gcb.13728
Ruiz-Benito, P., Vacchiano, G., Lines, E. R., Reyer, C. P. O., Ratcliffe, S., Morin, X., … Zavala, M. A. (2020). Available and missing data to model impact of climate change on European forests. Ecological Modelling, 416, 108870. https://doi.org/10.1016/j.ecolmodel.2019.108870
Sabatini, F. M., Burrascano, S., Keeton, W. S., Levers, C., Lindner, M., Pötzschner, F., … Kuemmerle, T. (2018). Where are Europe’s last primary forests? Diversity and Distributions, 24, 1426-1439. https://doi.org/10.1111/ddi.12778
Sainz Ollero, H., Sánchez, R., & García-Cervigón, A. (2010). La cartografía sintética de los paisajes vegetales españoles: Una asignatura pendiente en geobotánica. Ecología, 23, 249-272.
Sarmiento, J. L., Gloor, M., Gruber, N., Beaulieu, C., Jacobson, A. R., Mikaloff Fletcher, S. E., … Rodgers, K. (2010). Trends and regional distributions of land and ocean carbon sinks. Biogeosciences, 7, 2351-2367. https://doi.org/10.5194/bg-7-2351-2010
Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1, 103-113. https://doi.org/10.1111/j.2041-210x.2010.00012.x
Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461-464. https://doi.org/10.1214/aos/1176344136
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., … Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7, 395-402. https://doi.org/10.1038/nclimate3303
Seijo, F., Cespedes, B., & Zavala, G. (2018). Traditional fire use impact in the aboveground carbon stock of the chestnut forests of Central Spain and its implications for prescribed burning. Science of the Total Environment, 625, 1405-1414. https://doi.org/10.1016/j.scitotenv.2017.12.079
Senf, C., Pflugmacher, D., Zhiqiang, Y., Sebald, J., Knorn, J., Neumann, M., … Seidl, R. (2018). Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nature Communications, 9, 4978. https://doi.org/10.1038/s41467-018-07539-6
Shipley, B. (2000). Cause and correlation in biology: A user’s guide to path analysis, structural equations and causal inference. Cambridge, UK: Cambridge University Press. https://doi.org/10.1017/CBO9780511605949
Stephenson, N. L., Das, A. J., Condit, R., Russo, S. E., Baker, P. J., Beckman, N. G., … Zavala, M. A. (2014). Rate of tree carbon accumulation increases continuously with tree size. Nature, 507, 90-93. https://doi.org/10.1038/nature12914
Valladares, F., Matesanz, S., Guilhaumon, F., Araújo, M. B., Balaguer, L., Benito-Garzón, M., … Zavala, M. A. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecology Letters, 17, 1351-1364. https://doi.org/10.1111/ele.12348
van Mantgem, P. J., Stephenson, N. L., Byrne, J. C., Daniels, L. D., Franklin, J. F., Fule, P. Z., … Veblen, T. T. (2009). Widespread increase of tree mortality rates in the Western United States. Science, 323, 521-524. https://doi.org/10.1126/science.1165000
Vayreda, J., Gracia, M., Martinez-Vilalta, J., & Retana, J. (2013). Patterns and drivers of regeneration of tree species in forests of peninsular Spain. Journal of Biogeography, 40, 1252-1265. https://doi.org/10.1111/jbi.12105
Vayreda, J., Martinez-Vilalta, J., Gracia, M., Canadell, J. G., & Retana, J. (2016). Anthropogenic-driven rapid shifts in tree distribution lead to increased dominance of broadleaf species. Global Change Biology, 22, 3984-3995. https://doi.org/10.1111/gcb.13394
Vayreda, J., Martinez-Vilalta, J., Gracia, M., & Retana, J. (2012). Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Global Change Biology, 18, 1028-1041. https://doi.org/10.1111/j.1365-2486.2011.02606.x
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2009). A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23, 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
Vicente-Serrano, S. M., Tomas-Burguera, M., Beguería, S., Reig, F., Latorre, B., Peña-Gallardo, M., … González-Hidalgo, J. C. (2017). A high resolution dataset of drought indices for Spain. Data, 2, 22. https://doi.org/10.3390/data2030022
Vilà-Cabrera, A., Coll, L., Martínez-Vilalta, J., & Retana, J. (2018). Forest management for adaptation to climate change in the Mediterranean basin: A synthesis of evidence. Forest Ecology and Management, 407, 16-22. https://doi.org/10.1016/j.foreco.2017.10.021
Vilà-Cabrera, A., Espelta, J. M., Vayreda, J., & Pino, J. (2017). “New forests” from the twentieth century are a relevant contribution for c storage in the Iberian Peninsula. Ecosystems, 20, 130-143. https://doi.org/10.1007/s10021-016-0019-6
Vilà-Cabrera, A., Martínez-Vilalta, J., Vayreda, J., & Retana, J. (2011). Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecological Applications, 21, 1162-1172. https://doi.org/10.1890/10-0647.1
Villaescusa, R., & Díaz, R. (1998). Segundo Inventario Forestal Nacional (1986-1996). Madrid, Spain: Ministerio de Medio Ambiente, ICONA.
Villar-Salvador, P. (2016). Restoration of Spanish pine plantations: A main challenge for the 21st century. REFORESTA, 1, 53-66. https://doi.org/10.21750/REFOR.1.04.4
Westoby, M. (1984). The self-thinning rule. Advances in Ecological Research, 14, 167-225. https://doi.org/10.1016/S0065-2504(08)60171-3
Wilmking, M., Maaten-Theunissen, M., Maaten, E., Scharnweber, T., Buras, A., Biermann, C., … Trouillier, M. (2020). Global assessment of relationships between climate and tree growth. Global Change Biology, 00, 1-9. https://doi.org/10.1111/gcb.15057
Young, D. J. N., Stevens, J. T., Earles, J. M., Moore, J., Ellis, A., Jirka, A. L., & Latimer, A. M. (2017). Long-term climate and competition explain forest mortality patterns under extreme drought. Ecology Letters, 20, 78-86. https://doi.org/10.1111/ele.12711
Zavala, M. A., Espelta, J. M., Caspersen, J., & Retana, J. (2011). Interspecific differences in sapling performance with respect to light and aridity gradients in Mediterranean pine-oak forests: Implications for species coexistence. Canadian Journal of Forest Research, 41, 1432-1444. https://doi.org/10.1139/x11-050
Zavala, M. A., Espelta, J. M., & Retana, J. (2000). Constraints and trade-offs in Mediterranean plant communities: The case of holm oak-Aleppo pine forests. Botanical Review, 66, 119-149. https://doi.org/10.1007/BF02857785
Zhang, J., Huang, S., & He, F. (2015). Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proceedings of the National Academy of Sciences of the United States of America, 112, 4009-4014. https://doi.org/10.1073/pnas.1420844112
Zhou, G., Peng, C., Li, Y., Liu, S., Zhang, Q., Tang, X., … Chu, G. (2013). A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China. Global Change Biology, 19, 1197-1210. https://doi.org/10.1111/gcb.12128