ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing.
Journal
Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664
Informations de publication
Date de publication:
29 05 2020
29 05 2020
Historique:
received:
11
10
2019
accepted:
07
05
2020
revised:
09
04
2020
entrez:
31
5
2020
pubmed:
31
5
2020
medline:
22
6
2021
Statut:
epublish
Résumé
A key objective in the field of translational psychiatry over the past few decades has been to identify the brain correlates of major depressive disorder (MDD). Identifying measurable indicators of brain processes associated with MDD could facilitate the detection of individuals at risk, and the development of novel treatments, the monitoring of treatment effects, and predicting who might benefit most from treatments that target specific brain mechanisms. However, despite intensive neuroimaging research towards this effort, underpowered studies and a lack of reproducible findings have hindered progress. Here, we discuss the work of the ENIGMA Major Depressive Disorder (MDD) Consortium, which was established to address issues of poor replication, unreliable results, and overestimation of effect sizes in previous studies. The ENIGMA MDD Consortium currently includes data from 45 MDD study cohorts from 14 countries across six continents. The primary aim of ENIGMA MDD is to identify structural and functional brain alterations associated with MDD that can be reliably detected and replicated across cohorts worldwide. A secondary goal is to investigate how demographic, genetic, clinical, psychological, and environmental factors affect these associations. In this review, we summarize findings of the ENIGMA MDD disease working group to date and discuss future directions. We also highlight the challenges and benefits of large-scale data sharing for mental health research.
Identifiants
pubmed: 32472038
doi: 10.1038/s41398-020-0842-6
pii: 10.1038/s41398-020-0842-6
pmc: PMC7260219
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
172Subventions
Organisme : NIMH NIH HHS
ID : R37 MH101495
Pays : United States
Organisme : NCRR NIH HHS
ID : P41 RR008079
Pays : United States
Organisme : Medical Research Council
ID : MR/L010305/1
Pays : United Kingdom
Organisme : NIMH NIH HHS
ID : R01 MH116147
Pays : United States
Organisme : Wellcome Trust
Pays : United Kingdom
Organisme : NCCIH NIH HHS
ID : R61 AT009864
Pays : United States
Organisme : NIMH NIH HHS
ID : K01 MH117442
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH085734
Pays : United States
Organisme : NIBIB NIH HHS
ID : U54 EB020403
Pays : United States
Organisme : NIMH NIH HHS
ID : R01 MH117601
Pays : United States
Organisme : NIMH NIH HHS
ID : K23 MH090421
Pays : United States
Organisme : Department of Health | National Health and Medical Research Council (NHMRC)
ID : 1140764
Pays : International
Références
World Health Organization. Depression and other common mental disorders: global health estimates. 1–24 (2017).
Rush, A. J. et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am. J. Psychiatry 163, 1905–1917 (2006).
doi: 10.1176/ajp.2006.163.11.1905
pubmed: 17074942
Machado, M., Iskedjian, M., Ruiz, I. & Einarson, T. R. Remission, dropouts, and adverse drug reaction rates in major depressive disorder: a meta-analysis of head-to-head trials. Curr. Med. Res. Opin. 22, 1825–1837 (2006).
pubmed: 16968586
doi: 10.1185/030079906X132415
Thase, M. et al. Remission rates following antidepressant therapy with bupropion or selective serotonin reuptake inhibitors: a meta-analysis of original data from 7 randomized controlled trials. J. Clin. Psychiatry 66, 974–981 (2005).
pubmed: 16086611
doi: 10.4088/JCP.v66n0803
Trivedi, M. H. et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am. J. Psychiatry 163, 28–40 (2006).
doi: 10.1176/appi.ajp.163.1.28
pubmed: 16390886
Cuijpers, P. et al. The effects of psychotherapies for major depression in adults on remission, recovery and improvement: a meta-analysis. J. Affect. Disord. 159, 118–126 (2014).
pubmed: 24679399
doi: 10.1016/j.jad.2014.02.026
Mulders, P. C., Eijndhoven, P. F., Van Schene, A. H., Beckmann, C. F. & Tendolkar, I. Neuroscience and biobehavioral reviews resting-state functional connectivity in major depressive disorder: a review. Neurosci. Biobehav. Rev. 56, 330–344 (2015).
Kempton, M. J. Structural neuroimaging studies in major depressive disorder. Arch. Gen. Psychiatry 68, 675–690 (2011).
pubmed: 21727252
doi: 10.1001/archgenpsychiatry.2011.60
Kapur, S., Phillips, A. G. & Insel, T. R. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it. Mol. Psychiatry 17, 1174–1179 (2012).
doi: 10.1038/mp.2012.105
pubmed: 22869033
Button, K. S. et al. Power failure: why small sample size undermines the reliability of neuroscience Katherine. Nat. Rev. Neurosci. 14, 365–376 (2013).
doi: 10.1038/nrn3475
pubmed: 23571845
Ioannidis, J. P. A. Why most discovered true associations are inflated. Epidemiology 19, 640–648 (2008).
doi: 10.1097/EDE.0b013e31818131e7
pubmed: 18633328
Algermissen, J. & Mehler, D. M. A. May the power be with you: are there highly powered studies in neuroscience, and how can we get more of them? J. Neurophysiol. 119, 2114–2117 (2018).
pubmed: 29465324
doi: 10.1152/jn.00765.2017
Miller, J. What is the probability of replicating a statistically significant effect? Psychon. Bull. Rev. 16, 617–640 (2009).
pubmed: 19648445
doi: 10.3758/PBR.16.4.617
Müller, V. I. et al. Altered brain activity in unipolar depression revisited: meta-analyses of neuroimaging studies. JAMA Psychiatry 74, 47–55 (2017).
pubmed: 27829086
pmcid: 5293141
doi: 10.1001/jamapsychiatry.2016.2783
Sudlow, C. et al. UK Biobank: an openaccess resource for identifying the causes of a wide range of complex diseasesof middle and old age. PLoS Med. 12, 1–10. (2015).
doi: 10.1371/journal.pmed.1001779
Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1–10 (2018).
doi: 10.1038/s41467-017-02088-w
Shen, X. et al. Subcortical volume and white matter integrity abnormalities in major depressive disorder: Findings from UK Biobank imaging data. Sci. Rep. 7, 1–10. (2017).
doi: 10.1038/s41598-016-0028-x
Harris M. et al. Stratifying major depressive disorder by polygenic risk for schizophrenia in relation to structural brain measures. Psychol Med 2019. https://doi.org/10.1017/S003329171900165X . [Epub ahead of print]
Thompson, P. M. et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014).
pubmed: 24399358
pmcid: 4008818
doi: 10.1007/s11682-013-9269-5
Thompson, P. M. et al. ENIGMA and the individual: predicting factors that affect the brain in 35 countries worldwide. Neuroimage 145, 389–408 (2017).
pubmed: 26658930
doi: 10.1016/j.neuroimage.2015.11.057
Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).
pubmed: 32198361
pmcid: 7083923
doi: 10.1038/s41398-020-0705-1
Gottesman, I. I. & Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).
doi: 10.1176/appi.ajp.160.4.636
pubmed: 12668349
Holland, D. et al. Beyond SNP heritability: polygenicity and discoverability estimated for multiple phenotypes with a univariate gaussian mixture model. PLoS Genet 16, e1008612 (2020).
pubmed: 32427991
pmcid: 7272101
doi: 10.1371/journal.pgen.1008612
Flint, J. & Kendler, K. S. The genetics of major depression. Neuron 81, 484–503 (2014).
pubmed: 24507187
pmcid: 3919201
doi: 10.1016/j.neuron.2014.01.027
Satizabal, C. L. et al. Genetic architecture of subcortical brain structures in over 40,000 individuals worldwide. Nat Genet 51, 1624–1636 (2019).
pubmed: 31636452
pmcid: 7055269
doi: 10.1038/s41588-019-0511-y
Hibar, D. P. P. et al. Common genetic variants influence human subcortical brain structures. Nature 520, 224–229 (2015).
pubmed: 25607358
pmcid: 4393366
doi: 10.1038/nature14101
Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).
pubmed: 32193296
doi: 10.1126/science.aay6690
pmcid: 7295264
Adams HHHHH et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat. Neurosci. 19, 1569–1582 (2016).
doi: 10.1038/nn.4398
Hibar, D. P. P. et al. Novel genetic loci associated with hippocampal volume. Nat. Commun. 8, 13624 (2017).
pubmed: 28098162
pmcid: 5253632
doi: 10.1038/ncomms13624
Stein, J. L. et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nat. Genet 44, 552–561 (2012).
pubmed: 22504417
pmcid: 3635491
doi: 10.1038/ng.2250
Acheson, A. et al. Reproducibility of tract-based white matter microstructural measures using the ENIGMA-DTI protocol. Brain Behav. 7, 1–10 (2017).
doi: 10.1002/brb3.615
Adhikari, B. M. et al. Comparison of heritability estimates on resting state fMRI connectivity phenotypes using the ENIGMA analysis pipeline. Hum. Brain Mapp. 39, 4893–4902 (2018).
pubmed: 30052318
pmcid: 6218292
doi: 10.1002/hbm.24331
Jahanshad, N. et al. Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: a pilot project of the ENIGMA-DTI working group. Neuroimage 81, 455–469 (2013).
pubmed: 23629049
doi: 10.1016/j.neuroimage.2013.04.061
Kochunov, P. et al. Heritability of fractional anisotropy in human white matter: a comparison of Human Connectome Project and ENIGMA-DTI data. Neuroimage 111, 300–301. (2015).
pubmed: 25747917
doi: 10.1016/j.neuroimage.2015.02.050
Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21, 806–812 (2016).
doi: 10.1038/mp.2015.69
pubmed: 26122586
Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA major depressive disorder working group. Mol. Psychiatry 22, 900–909 (2017).
doi: 10.1038/mp.2016.60
pubmed: 27137745
Ho T. C. et al. Subcortical shape alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder Working Group. Hum. Brain Mapp. 2020. https://doi.org/10.1002/hbm.24988 . [Epub ahead of print].
van Velzen L. S. et al. White matter disturbances in major depressive disorder: a coordinated analysis across 20 international cohorts in the ENIGMA MDD working group. Mol. Psychiatry 2019. https://doi.org/10.1038/s41380-019-0477-2 . [Epub ahead of print].
Fischl, B. et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002).
pubmed: 11832223
doi: 10.1016/S0896-6273(02)00569-X
Burke, D. L., Ensor, J. & Riley, R. D. Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Stat. Med. 36, 855–875 (2017).
pubmed: 27747915
doi: 10.1002/sim.7141
Debray, T. P. A., Moons, K. G. M., Abo-Zaid, G. M. A., Koffijberg, H. & Da Riley, R. Individual participant data meta-analysis for a binary outcome: one-stage or two-stage? PLoS ONE 8, 1–10. (2013).
doi: 10.1371/journal.pone.0060650
Boedhoe, P. S. W. et al. An empirical comparison of meta- and mega-analysis with data from the ENIGMA obsessive-compulsive disorder Working Group. Front. Neuroinform. 12, 1–8 (2019).
doi: 10.3389/fninf.2018.00102
McKinnon, M. C., Yucel, K., Nazarov, A. & MacQueen, G. M. A meta-analysis examining clinical predictors of hippocampal volume in patients with major depressive disorder. J. Psychiatry Neurosci. 34, 41–54 (2009).
pubmed: 19125212
pmcid: 2612082
Campbell, S., Marriott, M., Nahmias, C. & Macqueen, G. M. Lower hippocampal volume in patients suffering from depression: a meta-analysis. Am. J. Psychiatry 161, 598–607 (2004).
pubmed: 15056502
doi: 10.1176/appi.ajp.161.4.598
Stratmann, M. et al. Insular and hippocampal gray matter volume reductions in patients with major depressive disorder. PLoS ONE 9, e102692 (2014).
pubmed: 25051163
pmcid: 4106847
doi: 10.1371/journal.pone.0102692
Elbejjani, M. et al. Depression, depressive symptoms, and rate of hippocampal atrophy in a longitudinal cohort of older men and women. Psychol. Med. 45, 1931–1944 (2015).
pubmed: 25896060
doi: 10.1017/S0033291714003055
Phillips, J. L., Batten, L. A., Tremblay, P., Aldosary, F. & Blier, P. A prospective, longitudinal study of the effect of remission on cortical thickness and hippocampal volume in patients with treatment-resistant depression. Int J. Neuropsychopharmacol. 18, pyv037 (2015).
pubmed: 25829180
pmcid: 4571636
doi: 10.1093/ijnp/pyv037
Frodl, T. et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J. Psychiatry Neurosci. 33, 423–430 (2008).
pubmed: 18787661
pmcid: 2527720
Taylor, W. D. et al. Hippocampus atrophy and the longitudinal course of late-life depression. Am. J. Geriatr. Psychiatry 22, 1504–1512 (2014).
pubmed: 24378256
doi: 10.1016/j.jagp.2013.11.004
Oltedal, L. et al. Volume of the human hippocampus and clinical response following electroconvulsive therapy. Biol. Psychiatry 84, 574–581 (2018).
pubmed: 30006199
pmcid: 6697556
doi: 10.1016/j.biopsych.2018.05.017
Arnone, D. et al. State-dependent changes in hippocampal grey matter in depression. Mol. Psychiatry 18, 1265–1272 (2013).
pubmed: 23128153
doi: 10.1038/mp.2012.150
Barch, D. M. et al. Hippocampal volume and depression among young children. Psychiatry Res. Neuroimaging 288, 21–28 (2019).
pubmed: 31071541
pmcid: 6550342
doi: 10.1016/j.pscychresns.2019.04.012
MacMaster, F. P. et al. Amygdala and hippocampal volumes in familial early onset major depressive disorder. Biol. Psychiatry 63, 385–390 (2008).
pubmed: 17640621
doi: 10.1016/j.biopsych.2007.05.005
MacMaster, F. P. & Kusumakar, V. Hippocampal volume in early onset depression. BMC Med. 2, 2 (2004).
pubmed: 14969587
pmcid: 333436
doi: 10.1186/1741-7015-2-2
Kim, J., Suh, S., Lee, H., Lee, J. & Lee, M. Cortical and subcortical gray matter alterations in first-episode drug-naïve adolescents with major depressive disorder. Neuroreport 30, 1172–1178 (2019).
pubmed: 31568197
pmcid: 6855326
doi: 10.1097/WNR.0000000000001336
Shen, Z. et al. Changes of grey matter volume in first-episode drug-naive adult major depressive disorder patients with different age-onset. NeuroImage Clin. 12, 492–498 (2016).
pubmed: 27668175
pmcid: 5026687
doi: 10.1016/j.nicl.2016.08.016
Jaworska, N. et al. Influence of age of onset on limbic and paralimbic structures in depression. Psychiatry Clin. Neurosci. 68, 812–820 (2014).
pubmed: 24773595
doi: 10.1111/pcn.12197
Hill, J., Pickles, A., Rollinson, L., Davies, R. & Byatt, M. Juvenile- versus adult-onset depression: multiple differences imply different pathways. Psychol. Med. 34, 1483–1493 (2004).
pubmed: 15724879
doi: 10.1017/S0033291704002843
Jaffee, S. R. et al. Differences in early childhood rsk factors for juvenile-onset and adult-onset depression. Arch. Gen. Psychiatry 59, 215–222 (2002).
pubmed: 11879158
doi: 10.1001/archpsyc.59.3.215
Kendler, K. S., Fiske, A., Gardner, C. O. & Gatz, M. Delineation of two genetic pathways to major depression. Biol. Psychiatry 65, 808–811 (2009).
pubmed: 19103442
doi: 10.1016/j.biopsych.2008.11.015
Du, M. et al. Brain grey matter volume alterations in late-life depression. J. Psychiatry Neurosci. 39, 397–406 (2014).
pubmed: 24949867
pmcid: 4214874
doi: 10.1503/jpn.130275
Hamilton, J. P., Siemer, M. & Gotlib, I. H. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol. Psychiatry 13, 993–1000 (2008).
pubmed: 18504424
pmcid: 2739676
doi: 10.1038/mp.2008.57
Hammen, C. Stress and depression. Annu Rev. Clin. Psychol. 1, 293–319 (2005).
pubmed: 17716090
doi: 10.1146/annurev.clinpsy.1.102803.143938
Winkler, A. M. et al. Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. Neuroimage 53, 1135–1146 (2010).
pubmed: 20006715
doi: 10.1016/j.neuroimage.2009.12.028
Panizzon, M. S. et al. Distinct genetic influences on cortical surface area and cortical thickness. Cereb. Cortex 19, 2728–2735 (2009).
pubmed: 19299253
pmcid: 2758684
doi: 10.1093/cercor/bhp026
Bora, E., Fornito, A., Pantelis, C. & Yücel, M. Gray matter abnormalities in major depressive disorder: a meta-analysis of voxel based morphometry studies. J. Affect Disord. 138, 9–18 (2012).
pubmed: 21511342
doi: 10.1016/j.jad.2011.03.049
Lai, C. H. Gray matter volume in major depressive disorder: a meta-analysis of voxel-based morphometry studies. Psychiatry Res. 211, 37–46 (2013).
pubmed: 23146253
doi: 10.1016/j.pscychresns.2012.06.006
Arnone, D., McIntosh, A. M., Ebmeier, K. P., Munafò, M. R. & Anderson, I. M. Magnetic resonance imaging studies in unipolar depression: systematic review and meta-regression analyses. Eur. Neuropsychopharmacol. 22, 1–16 (2012).
pubmed: 21723712
doi: 10.1016/j.euroneuro.2011.05.003
Koolschijn, P. C. M. P., van Haren, N. E. M., Lensvelt-Mulders, G. J. L. M., Hulshoff Pol, H. E. & Kahn, R. S. Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum. Brain Mapp. 30, 3719–3735 (2009).
pubmed: 19441021
pmcid: 6871089
doi: 10.1002/hbm.20801
Lemaitre, H. et al. Nonuniformity across cortical thickness. Neurobiol. Aging 33, 617.e1–617.e9 (2012).
doi: 10.1016/j.neurobiolaging.2010.07.013
Storsve, A. B. et al. Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J. Neurosci. 34, 8488–8498 (2014).
pubmed: 24948804
pmcid: 6608217
doi: 10.1523/JNEUROSCI.0391-14.2014
Hutton, C., Draganski, B., Ashburner, J. & Weiskopf, N. A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging. Neuroimage 48, 371–380 (2009).
pubmed: 19559801
doi: 10.1016/j.neuroimage.2009.06.043
Jha, S. C. et al. Environmental influences on infant cortical thickness and surface area. Cereb. Cortex 29, 1139–1149 (2018).
pmcid: 6373689
doi: 10.1093/cercor/bhy020
Migliorini, R. et al. Anterior cingulate cortex surface area relates to behavioral inhibition in adolescents with and without heavy prenatal alcohol exposure. Behav. Brain Res 292, 26–35 (2015).
pubmed: 26025509
pmcid: 4558293
doi: 10.1016/j.bbr.2015.05.037
Tozzi L. et al. Interactive impact of childhood maltreatment, depression, and age on cortical brain structure: mega-analytic findings from a large multi-site cohort. Psychol. Med. 50, 1020–1031 (2020).
Kelly, P. et al. Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: neural markers of vulnerability? Biol. Psychiatry 74, 845–852 (2013).
pubmed: 23954109
doi: 10.1016/j.biopsych.2013.06.020
Opel, N. et al. Mediation of the influence of childhood maltreatment on depression relapse by cortical structure: a 2-year longitudinal observational study. Lancet Psychiatry 6, 318–326 (2019).
pubmed: 30904126
doi: 10.1016/S2215-0366(19)30044-6
Eyler, L. T. et al. A comparison of heritability maps of cortical surface area and thickness and the influence of adjustment for whole brain measures: a magnetic resonance imaging twin study. Twin Res. Hum. Genet. 15, 304–314 (2012).
pubmed: 22856366
pmcid: 3549553
doi: 10.1017/thg.2012.3
Fjell, A. M. et al. Continuity and discontinuity in human cortical development and change from embryonic stages to old age. Cereb. Cortex 29, 3879–3890 (2018).
doi: 10.1093/cercor/bhy266
van Erp, T. G. M. et al. Cortical brain abnormalities in 4474 individuals with schizophrenia and 5098 control subjects via the enhancing neuro imaging genetics through meta analysis (ENIGMA) consortium. Biol. Psychiatry 84, 644–654 (2018).
pubmed: 29960671
pmcid: 6177304
doi: 10.1016/j.biopsych.2018.04.023
Jalbrzikowski, M. et al. Structural brain alterations in youth with psychosis and bipolar spectrum symptoms. J. Am. Acad. Child Adolesc. Psychiatry 58, 1079–1091 (2019).
pubmed: 30768396
pmcid: 7110691
doi: 10.1016/j.jaac.2018.11.012
Chung, Y. et al. Cortical abnormalities in youth at clinical high-risk for psychosis: findings from the NAPLS2 cohort. NeuroImage Clin. 23, 101862 (2019).
pubmed: 31150956
pmcid: 6541907
doi: 10.1016/j.nicl.2019.101862
de Zwarte, S. M. C. et al. Running in the family? Structural brain abnormalities and IQ in offspring, siblings, parents, and co-twins of patients with schizophrenia. Schizophr. Bull. 45, 1209–1217 (2018).
pmcid: 6811835
doi: 10.1093/schbul/sby182
van der Vinne, N., Vollebregt, M. A., van Putten, M. J. A. M. & Arns, M. Frontal alpha asymmetry as a diagnostic marker in depression: fact or fiction? A meta-analysis. NeuroImage Clin. 16, 79–87 (2017).
pubmed: 28761811
pmcid: 5524421
doi: 10.1016/j.nicl.2017.07.006
Kumar, A., Bilker, W., Lavretsky, H. & Gottlieb, G. Volumetric asymmetries in late-onset mood disorders: an attenuation of frontal asymmetry with depression severity. Psychiatry Res. Neuroimaging 100, 41–47 (2000).
doi: 10.1016/S0925-4927(00)00067-6
Liu, W. et al. Structural asymmetry of dorsolateral prefrontal cortex correlates with depressive symptoms: evidence from healthy individuals and patients with major depressive disorder. Neurosci. Bull. 32, 217–226 (2016).
pubmed: 27015663
pmcid: 5563769
doi: 10.1007/s12264-016-0025-x
de Kovel, C. G. F. et al. No alterations of brain structural asymmetry in major depressive disorder: an ENIGMA consortium analysis. Am. J. Psychiatry 176, 1039–1049 (2019).
pubmed: 31352813
doi: 10.1176/appi.ajp.2019.18101144
Penninx, B. W. J. H. Depression and cardiovascular disease: epidemiological evidence on their linking mechanisms. Neurosci. Biobehav Rev. 74, 277–286 (2017).
pubmed: 27461915
doi: 10.1016/j.neubiorev.2016.07.003
Spiegel, D. & Giese-Davis, J. Depression and cancer: mechanisms and disease progression. Biol. Psychiatry 54, 269–282 (2003).
pubmed: 12893103
doi: 10.1016/S0006-3223(03)00566-3
Koutsouleris, N. et al. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr. Bull. 40, 1140–1153 (2014).
pubmed: 24126515
doi: 10.1093/schbul/sbt142
Han L. K. M. et al. Brain aging in major depressive disorder: results from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 2020. https://doi.org/10.1038/s41380-020-0754-0 . [Epub ahead of print].
Cole, J. H., Marioni, R. E., Harris, S. E. & Deary, I. J. Brain age and other bodily ‘ages’: implications for neuropsychiatry. Mol. Psychiatry 24, 266–281 (2019).
pubmed: 29892055
doi: 10.1038/s41380-018-0098-1
Le, T. T. et al. Effect of ibuprofen on BrainAGE: a randomized, placebo-controlled, dose-response exploratory study. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3, 836–843 (2018).
pubmed: 29941380
pmcid: 6510235
Kakeda, S. et al. Relationship between interleukin (IL)-6 and brain morphology in drug-naïve, first-episode major depressive disorder using surface-based morphometry. Sci. Rep. 8, 2–10. (2018).
doi: 10.1038/s41598-018-28300-5
Sajedi, H. & Pardakhti, N. Age prediction based on brain MRI image: a survey. J. Med Syst. 43, 279 (2019).
pubmed: 31297614
doi: 10.1007/s10916-019-1401-7
Alexander, A. L. et al. Characterization of cerebral white matter properties using quantitative magnetic resonance imaging stains. Brain Connect 1, 423–446 (2011).
pubmed: 22432902
pmcid: 3360545
doi: 10.1089/brain.2011.0071
Song, S. K. et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17, 1429–1436 (2002).
pubmed: 12414282
doi: 10.1006/nimg.2002.1267
Song, S. K. et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26, 132–140 (2005).
pubmed: 15862213
doi: 10.1016/j.neuroimage.2005.01.028
Chen, G. et al. Disorganization of white matter architecture in major depressive disorder: a meta-analysis of diffusion tensor imaging with tract-based spatial statistics. Sci. Rep. 6, 1–12. (2016).
doi: 10.1038/s41598-016-0001-8
Choi, S. et al. Association of brain-derived neurotrophic factor DNA methylation and reduced white matter integrity in the anterior corona radiata in major depression. J. Affect. Disord. 172, 74–80 (2015).
pubmed: 25451398
doi: 10.1016/j.jad.2014.09.042
Sanjuan, P. M., Thoma, R., Claus, E. D., Mays, N. & Caprihan, A. Reduced white matter integrity in the cingulum and anterior corona radiata in posttraumatic stress disorder in male combat veterans: a diffusion tensor imaging study. Psychiatry Res. Neuroimaging 214, 260–268 (2013).
doi: 10.1016/j.pscychresns.2013.09.002
Gur, R. E. & Gur, R. C. Sex differences in brain and behavior in adolescence: findings from the Philadelphia Neurodevelopmental Cohort. Neurosci. Biobehav Rev. 70, 159–170 (2016).
pubmed: 27498084
pmcid: 5098398
doi: 10.1016/j.neubiorev.2016.07.035
Giedd, J. N., Raznahan, A., Mills, K. L. & Lenroot, R. K. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy. Biol. Sex. Differ. 3, 1–9 (2012).
doi: 10.1186/2042-6410-3-19
Green, J. G. et al. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders. Arch. Gen. Psychiatry 67, 113–123 (2010).
pubmed: 20124111
pmcid: 2822662
doi: 10.1001/archgenpsychiatry.2009.186
McLaughlin, K. A. et al. Childhood adversities and first onset of psychiatric disorders in a national sample of US adolescents. Arch. Gen. Psychiatry 69, 1151–1160 (2012).
pubmed: 23117636
pmcid: 3490224
doi: 10.1001/archgenpsychiatry.2011.2277
Kessler, R. C. et al. Childhood adversities and adult psychopathology in the WHO world mental health surveys. Br. J. Psychiatry 197, 378–385 (2010).
pubmed: 21037215
pmcid: 2966503
doi: 10.1192/bjp.bp.110.080499
Frodl, T. et al. Childhood stress, serotonin transporter gene and brain structures in major depression. Neuropsychopharmacology 35, 1383–1390 (2010).
pubmed: 20147891
pmcid: 3055341
doi: 10.1038/npp.2010.8
Dannlowski, U. et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol. Psychiatry 71, 286–293 (2012).
doi: 10.1016/j.biopsych.2011.10.021
pubmed: 22112927
Teicher, M. H., Samson, J. A., Anderson, C. M. & Ohashi, K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat. Rev. Neurosci. 17, 652–666 (2016).
pubmed: 27640984
doi: 10.1038/nrn.2016.111
Frodl, T. et al. Childhood adversity impacts on brain subcortical structures relevant to depression. J. Psychiatr. Res. 86, 58–65 (2017).
doi: 10.1016/j.jpsychires.2016.11.010
pubmed: 27918926
O’Doherty, J. P. Reward representations and reward-related learning in the human brain: insights from neuroimaging. Curr. Opin. Neurobiol. 14, 769–776 (2004).
pubmed: 15582382
doi: 10.1016/j.conb.2004.10.016
Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26 (2010).
pubmed: 19812543
doi: 10.1038/npp.2009.129
Chen, Y. & Baram, T. Z. Toward understanding how early-life stress reprograms cognitive and emotional brain networks. Neuropsychopharmacology 41, 197–206 (2016).
pubmed: 26105143
doi: 10.1038/npp.2015.181
Sheridan, M. A. et al. Early deprivation disruption of associative learning is a developmental pathway to depression and social problems. Nat. Commun. 9, 1–8 (2018).
doi: 10.1038/s41467-018-04381-8
Baldwin, J. R., Reuben, A., Newbury, J. B. & Danese, A. Agreement between prospective and retrospective measures of childhood maltreatment: a systematic review and meta-analysis. JAMA Psychiatry 76, 584–593 (2019).
pubmed: 30892562
pmcid: 6551848
doi: 10.1001/jamapsychiatry.2019.0097
Holma, K. M. et al. Differences in incidence of suicide attempts between bipolar I and II disorders and major depressive disorder. Bipolar Disord. 16, 652–661 (2014).
pubmed: 24636453
doi: 10.1111/bdi.12195
Schaffer, A. et al. International society for bipolar disorders task force on suicide: meta-analyses and meta-regression of correlates of suicide attempts and suicide deaths in bipolar disorder. Bipolar Disord. 17, 1–16 (2015).
pubmed: 25329791
doi: 10.1111/bdi.12271
Balcioglu, Y. H. & Kose, S. Neural substrates of suicide and suicidal behaviour: from a neuroimaging perspective. Psychiatry Clin. Psychopharmacol. 28, 314–328 (2018).
doi: 10.1080/24750573.2017.1420378
Bani-Fatemi, A. et al. Structural and functional alterations of the suicidal brain: an updated review of neuroimaging studies. Psychiatry Res. Neuroimaging 278, 77–91 (2018).
pubmed: 29929763
doi: 10.1016/j.pscychresns.2018.05.008
Domínguez-Baleón, C., Gutiérrez-Mondragón, L. F., Campos-González, A. I. & Rentería, M. E. Neuroimaging studies of suicidal behavior and non-suicidal self-injury in psychiatric patients: a systematic review. Front. Psychiatry 9, 500 (2018).
pubmed: 30386264
pmcid: 6198177
doi: 10.3389/fpsyt.2018.00500
Cox Lippard, E. T., Johnston, J. A. & Blumberg, H. P. Neurobiological risk factors for suicide insights from brain imaging. Am. J. Prev. Med. 47, S152–S162 (2014).
pubmed: 25145733
pmcid: 4143781
doi: 10.1016/j.amepre.2014.06.009
van Heeringen, K., Bijttebier, S., Desmyter, S., Vervaet, M. & Baeken, C. Is there a neuroanatomical basis of the vulnerability to suicidal behavior? A coordinate-based meta-analysis of structural and functional MRI studies. Front Hum. Neurosci. 8, 1–8 (2014).
Schmaal, L. et al. Imaging suicidal thoughts and behaviors: a comprehensive review of 2 decades of neuroimaging studies. Mol. Psychiatry 25, 408–427 (2020).
pubmed: 31787757
doi: 10.1038/s41380-019-0587-x
Renteria, M. E. et al. Subcortical brain structure and suicidal behaviour in major depressive disorder: a meta-analysis from the ENIGMA-MDD working group. Transl. Psychiatry 7, e1116 (2017).
pubmed: 28463239
pmcid: 5534952
doi: 10.1038/tp.2017.84
Pilar-Cuéllar, F. et al. Neural plasticity and proliferation in the generation of antidepressant effects: hippocampal implication. Neural Plast. 2013, 537265 (2013).
pubmed: 23862076
pmcid: 3703717
doi: 10.1155/2013/537265
Miller, K. L. et al. Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat. Neurosci. 19, 1523–1536 (2016).
pubmed: 27643430
pmcid: 5086094
doi: 10.1038/nn.4393
Pagliaccio D., Alqueza K. L., Marsh R., Auerbach R. P. Brain volume abnormalities in youth at high risk for depression: adolescent brain and cognitive development study. J Am Acad Child Adolesc Psychiatry 2019. https://doi.org/10.1016/j.jaac.2019.09.032 . [Epub ahead of print]
Castellanos, F. X., Di Martino, A., Craddock, R. C., Mehta, A. D. & Milham, M. P. Clinical applications of the functional connectome. Neuroimage 80, 527–540 (2013).
pubmed: 23631991
doi: 10.1016/j.neuroimage.2013.04.083
Yan, C. G. et al. Reduced default mode network functional connectivity in patients with recurrent major depressive disorder. Proc. Natl Acad. Sci. USA 116, 9078–9083 (2019).
doi: 10.1073/pnas.1900390116
pubmed: 30979801
pmcid: 6500168
Fried, E. I. & Nesse, R. M. Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med. 13, 1–11. (2015).
doi: 10.1186/s12916-015-0325-4
Chekroud, A. M. et al. Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach. JAMA Psychiatry 74, 370–378 (2017).
pubmed: 28241180
pmcid: 5863470
doi: 10.1001/jamapsychiatry.2017.0025
Drysdale, A. T. et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nat. Med. 23, 28–38 (2016).
pubmed: 27918562
pmcid: 5624035
doi: 10.1038/nm.4246
Dinga, R. et al. Evaluating the evidence for biotypes of depression: attempted replication of Drysdale et.al. 2017. NeuroImage Clin. 22, 101796 (2019).
pubmed: 30935858
pmcid: 6543446
doi: 10.1016/j.nicl.2019.101796
Kaiser, R. H., Andrews-Hanna, J. R., Wager, T. D. & Pizzagalli, D. A. Large-scale network dysfunction in major depressive disorder: a meta-analysis of resting-state functional connectivity. JAMA Psychiatry 72, 603–611 (2015).
pubmed: 25785575
pmcid: 4456260
doi: 10.1001/jamapsychiatry.2015.0071
Cuthbert, B. N. Research domain criteria: toward future psychiatric nosologies. Dialogues Clin. Neurosci. 17, 89–97 (2015).
pubmed: 25987867
pmcid: 4421905
doi: 10.31887/DCNS.2015.17.1/bcuthbert
Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F. & Fox, P. T. Activation likelihood estimation meta-analysis revisited. Neuroimage 59, 2349–2361 (2012).
pubmed: 21963913
doi: 10.1016/j.neuroimage.2011.09.017
Salimi-Khorshidi, G., Smith, S. M., Keltner, J. R., Wager, T. D. & Nichols, T. E. Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. Neuroimage 45, 810–823 (2009).
pubmed: 19166944
doi: 10.1016/j.neuroimage.2008.12.039
Albajes-Eizagirre, A. & Radua, J. What do results from coordinate-based meta-analyses tell us? Neuroimage 176, 550–553 (2018).
pubmed: 29729389
doi: 10.1016/j.neuroimage.2018.04.065
Veer I., Waller L., Lett T., Erk S., Walter H. ENIGMA task-based fMRI: a workgroup studying the genetic basis of task-evoked brain activity. In: 25th Organization of Human Brain Mapping Annual Meeting. 2019.
Hibar, D. P. et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol. Psychiatry 23, 932–942 (2018).
doi: 10.1038/mp.2017.73
pubmed: 28461699
van Erp, T. G. M. et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol. Psychiatry 21, 547–553 (2016).
doi: 10.1038/mp.2015.63
pubmed: 26033243
Hibar, D. P. et al. Subcortical volumetric abnormalities in bipolar disorder. Mol. Psychiatry 21, 1710–1716 (2016).
pubmed: 26857596
pmcid: 5116479
doi: 10.1038/mp.2015.227
Boedhoe, P. S. W. et al. Distinct subcortical volume alterations in pediatric and adult OCD: a worldwide meta- and mega-analysis. Am. J. Psychiatry 174, 60–69 (2017).
doi: 10.1176/appi.ajp.2016.16020201
pubmed: 27609241
Logue, M. W. et al. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia. Biol. Psychiatry 83, 244–253 (2018).
doi: 10.1016/j.biopsych.2017.09.006
pubmed: 29217296
Mackey, S. et al. Mega-analysis of gray matter volume in substance dependence: general and substance-specific regional effects. Am. J. Psychiatry 176, 119–128 (2019).
doi: 10.1176/appi.ajp.2018.17040415
pubmed: 30336705
Boedhoe P. et al. Subcortical brain volume, regional cortical thickness and cortical surface area across attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and obsessive-compulsive disorder (OCD). Am J Psychiatry 2020 [in press].
Brouwer, R. M. et al. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: results of the ENIGMA plasticity working group. Hum. Brain Mapp. 38, 4444–4458 (2017).
pubmed: 28580697
pmcid: 5572837
doi: 10.1002/hbm.23672