Near-Infrared-III-Absorbing and -Emitting Dyes: Energy-Gap Engineering of Expanded Porphyrinoids via Metallation.
dyes
near-infrared region
orbital interaction
photoacoustic spectroscopy
porphyrinoids
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
07 09 2020
07 09 2020
Historique:
received:
26
04
2020
pubmed:
30
5
2020
medline:
30
5
2020
entrez:
30
5
2020
Statut:
ppublish
Résumé
The synthesis of organometallic complexes of modified 26π-conjugated hexaphyrins with absorption and emission capabilities in the third near-infrared region (NIR-III) is described. Symmetry alteration of the frontier molecular orbitals (MOs) of bis-Pd
Identifiants
pubmed: 32469135
doi: 10.1002/anie.202006026
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
16161-16166Informations de copyright
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Références
S. Saito, A. Osuka, Angew. Chem. Int. Ed. 2011, 50, 4342-4373;
Angew. Chem. 2011, 123, 4432-4464.
B. Szyszko, M. J. Biåek, E. Pacholska-Dudziak, L. Latos-Grazyński, Chem. Rev. 2017, 117, 2839-2909.
Z. S. Yoon, J. H. Kwon, M. C. Yoon, M. K. Koh, S. B. Noh, J. L. Sessler, J. T. Lee, D. Seidel, A. Aguilar, S. Shimizu, M. Suzuki, A. Osuka, D. Kim, J. Am. Chem. Soc. 2006, 128, 14128-14134.
P. J. Boul, D. G. Cho, G. M. A. Rahman, M. Marquez, Z. Ou, K. M. Kadish, D. M. Guldi, J. L. Sessler, J. Am. Chem. Soc. 2007, 129, 5683-5687.
J. D. Hooker, V. H. Nguyen, V. M. Taylor, D. L. Cedeño, T. D. Lash, M. A. Jones, S. M. Robledo, I. D. Vélez, Photochem. Photobiol. 2012, 88, 194-200.
Z. Tian, S. Dai, D. Jiang, ACS Appl. Mater. Interfaces 2015, 7, 13073-13079.
Z. Zhang, D. S. Kim, C. Y. Lin, H. Zhang, A. D. Lammer, V. M. Lynch, I. Popov, O. S. Miljanić, E. V. Anslyn, J. L. Sessler, J. Am. Chem. Soc. 2015, 137, 7769-7774.
T. Higashino, H. Nakatsuji, R. Fukuda, H. Okamoto, H. Imai, T. Matsuda, H. Tochio, M. Shirakawa, N. V. Tkachenko, M. Hashida, T. Murakami, H. Imahori, ChemBioChem 2017, 18, 951-959.
R. Paolesse, S. Nardis, D. Monti, M. Stefanelli, C. D. Natale, Chem. Rev. 2017, 117, 2517-2583.
H. Ruffin, G. N. M. Boussambe, T. Roisnel, V. Dorcet, B. Boitrel, S. L. Gac, J. Am. Chem. Soc. 2017, 139, 13847-13857.
G. Thiabaud, G. He, S. Sen, K. A. Shelton, W. B. Baze, L. Segura, J. Alaniz, R. M. Macias, G. Lyness, A. B. Watts, H. M. Kim, H. Lee, M. Y. Cho, K. S. Hong, R. Finch, Z. H. Siddik, J. F. Arambula, J. L. Sessler, Proc. Natl. Acad. Sci. USA 2020, 117, 7021-7029.
Y. Wang, H. Kai, M. Ishida, S. Gokulnath, S. Mori, T. Murayama, A. Muranaka, M. Uchiyama, Y. Yasutake, S. Fukatsu, Y. Notsuka, Y. Yamaoka, M. Hanafusa, M. Yoshizawa, G. Kim, D. Kim, H. Furuta, J. Am. Chem. Soc. 2020, 142, 6807-6813.
E. Hemmer, A. Benayas, F. Légaré, F. Vetrone, Nanoscale Horiz. 2016, 1, 168-184.
A. M. Smith, M. C. Mancini, S. Nie, Nat. Nanotechnol. 2009, 4, 710-711.
G. Hong, Y. Zou, A. L. Antaris, S. Diao, D. Wu, K. Cheng, X. Zhang, C. Chen, B. Liu, Y. He, J. Z. Wu, J. Yuan, B. Zhang, Z. Tao, C. Fukunaga, H. Dai, Nat. Commun. 2014, 5, 4206.
A. L. Antaris, H. Chen, K. Cheng, Y. Sun, G. Hong, C. Qu, S. Diao, Z. Deng, X. Hu, B. Zhang, X. Zhang, O. K. Yaghi, Z. R. Alamparambil, X. Hong, Z. Cheng, H. Dai, Nat. Mater. 2016, 15, 235-242.
A. L. Antaris, H. Chen, S. Diao, Z. Ma, Z. Zhang, S. Zhu, J. Wang, A. X. Lozano, Q. Fan, L. Chew, M. Zhu, K. Cheng, X. Hong, H. Dai, Z. Cheng, Nat. Commun. 2017, 8, 15269.
Q. Yang, Z. Ma, H. Wang, B. Zhou, S. Zhu, Y. Zhong, J. Wang, H. Wan, A. Antaris, R. Ma, X. Zhang, J. Yang, X. Zhang, H. Sun, W. Liu, Y. Liang, H. Dai, Adv. Mater. 2017, 29, 1605497.
H. Mori, T. Tanaka, A. Osuka, J. Mater. Chem. C 2013, 1, 2500-2519.
H. Mori, T. Tanaka, S. Lee, J. M. Lim, D. Kim, A. Osuka, J. Am. Chem. Soc. 2015, 137, 2097-2106.
L. Wu, F. Li, Y. Rao, B. Wen, L. Xu, M. Zhou, T. Tanaka, A. Osuka, J. Song, Angew. Chem. Int. Ed. 2019, 58, 8124-8128;
Angew. Chem. 2019, 131, 8208-8212.
T. Soya, W. Kim, D. Kim, A. Osuka, Chem. Eur. J. 2015, 21, 8341-8346.
T. Okujima, C. Ando, S. Agrawal, H. Matsumoto, S. Mori, K. Ohara, I. Hisaki, T. Nakae, M. Takase, H. Uno, N. Kobayashi, J. Am. Chem. Soc. 2016, 138, 7540-7543.
T. Tanaka, A. Osuka, Chem. Rev. 2017, 117, 2584-2640.
T. Soya, H. Mori, A. Osuka, Angew. Chem. Int. Ed. 2018, 57, 15882-15886;
Angew. Chem. 2018, 130, 16108-16112.
Y. Tanaka, T. Yoneda, K. Furukawa, T. Koide, H. Mori, T. Tanaka, H. Shinokubo, A. Osuka, Angew. Chem. Int. Ed. 2015, 54, 10908-10911;
Angew. Chem. 2015, 127, 11058-11061.
X. S. Ke, Y. Hong, P. Tu, Q. He, V. M. Lynch, D. Kim, J. L. Sessler, J. Am. Chem. Soc. 2017, 139, 15232-15238.
D. Shimizu, A. Osuka, Chem. Sci. 2018, 9, 1408-1423.
S. Gokulnath, K. Nishimura, M. Toganoh, S. Mori, H. Furuta, Angew. Chem. Int. Ed. 2013, 52, 6940-6943;
Angew. Chem. 2013, 125, 7078-7081.
T. Yoneda, A. Osuka, Chem. Eur. J. 2013, 19, 7314-7318.
In contrast, the hypothetical model of the corresponding bis-NiII complex of the hexaphyrin has a relatively larger HOMO-LUMO gap (Figure S1).
M. Olaru, J. Beckmann, C. I. Raţ, Organometallics 2014, 33, 3012-3020.
A. Srinivasan, T. Ishizuka, A. Osuka, H. Furuta, J. Am. Chem. Soc. 2003, 125, 878-879.
K. Shimomura, H. Kai, Y. Nakamura, Y. Hong, S. Mori, K. Miki, K. Ohe, Y. Notsuka, Y. Yamaoka, M. Ishida, D. Kim, H. Furuta, J. Am. Chem. Soc. 2020, 142, 4429-4437.
P. Pushpanandan, D. H. Won, S. Mori, Y. Yasutake, S. Fukatsu, M. Ishida, H. Furuta, Chem. Asian J. 2019, 14, 1729-1736.
T. M. Krygowski, H. Szatylowicz, O. A. Stasyuk, J. Dominikowska, M. Palusiak, Chem. Rev. 2014, 114, 6383-6422.
D. Geuenich, K. Hess, F. Köhler, R. Herges, Chem. Rev. 2005, 105, 3758-3772.
S. Klod, E. Kleinpeter, J. Chem. Soc. Perkin Trans. 2 2001, 1893-1898.
Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev. 2005, 105, 3842-3888.
W. R. Mason, Magnetic Circular Dichroism Spectroscopy, Wiley, Hoboken, 2007.
N. Kobayashi, K. Nakai, Chem. Commun. 2007, 4077-4092.
J. Mack, M. J. Stillman, N. Kobayashi, Coord. Chem. Rev. 2007, 251, 429-453.
A. Muranaka, O. Matsushita, K. Yoshida, S. Mori, M. Suzuki, T. Furuyama, M. Uchiyama, A. Osuka, N. Kobayashi, Chem. Eur. J. 2009, 15, 3744-3751.
J. Michl, J. Am. Chem. Soc. 1978, 100, 6801-6811.
M. Bixon, J. Jortner, J. Chem. Phys. 1968, 48, 715.
H. A. Frank, V. Chynwat, R. Z. B. Desamero, R. Farhoosh, J. Erickson, J. Bautista, Pure Appl. Chem. 1997, 69, 2117-2124.
In general, the PdII porphyrin exhibits dual emission; fluorescence and phosphorescence. See A. Harriman, J. Chem. Soc. Faraday Trans. 2 1981, 77, 1281-1291.
F. Bolze, C. P. Gros, P. D. Harvey, R. Guilard, J. Porphyrins Phthalocyanines 2001, 5, 569-574.
There is no change in the emission spectra upon passing dioxygen gas into the solution because the energy level of the excited triplet state is far beyond the one of singlet oxygen (1270 nm). See Figure S22.
S. Cho, Z. S. Yoon, K. S. Kim, M. C. Yoon, D. G. Cho, J. L. Sessler, D. Kim, J. Phys. Chem. Lett. 2010, 1, 895-900.
S. Wang, L. Liu, Y. Fan, A. M. El-Toni, M. S. Alhoshan, D. Li, F. Zhang, Nano Lett. 2019, 19, 2418-2427.
M. Zhang, J. Yue, R. Cui, Z. Ma, H. Wan, F. Wang, S. Zhu, Y. Zhou, Y. Kuang, Y. Zhong, D. Pang, H. Dai, Proc. Natl. Acad. Sci. USA 2018, 115, 6590-6595.
Z. Ma, M. Zhang, J. Yue, C. Alcazar, Y. Zhong, T. C. Doyle, H. Dai, N. F. Huang, Adv. Funct. Mater. 2018, 28, 1803417.
The distinct PA profiles of the bis-PdII complexes t-Pd2-3 and c-Pd2-3 were observed and relevant to the one-photon absorption spectra (Figure S25a,b).
Y. Ikawa, M. Takeda, M. Suzuki, A. Osuka, H. Furuta, Chem. Commun. 2010, 46, 5689-5691.
S. Diao, J. L. Blackburn, G. Hong, A. L. Antaris, J. Chang, J. Z. Wu, B. Zhang, K. Cheng, C. J. Kuo, H. Dai, Angew. Chem. Int. Ed. 2015, 54, 14758-14762;
Angew. Chem. 2015, 127, 14971-14975.