Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11.


Journal

Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742

Informations de publication

Date de publication:
01 2021
Historique:
received: 28 02 2020
accepted: 22 04 2020
revised: 13 04 2020
pubmed: 28 5 2020
medline: 13 10 2021
entrez: 28 5 2020
Statut: ppublish

Résumé

Type-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation. We now demonstrate that type-2 immune-associated neutrophil infiltration is regulated by the mouse RNase A homologue, eosinophil-associated ribonuclease 11 (Ear11), which is secreted by AAM downstream of IL-25-stimulated ILC2. Transgenic overexpression of Ear11 resulted in tissue neutrophilia, whereas Ear11-deficient mice have fewer resting tissue neutrophils, whilst other type-2 immune responses are not impaired. Notably, administration of recombinant mouse Ear11 increases neutrophil motility and recruitment. Thus, Ear11 helps maintain tissue neutrophils at homoeostasis and during type-2 reactions when chemokine-producing classically activated macrophages are infrequently elicited.

Identifiants

pubmed: 32457448
doi: 10.1038/s41385-020-0298-2
pii: S1933-0219(22)00105-2
pmc: PMC7790759
mid: EMS108830
doi:

Substances chimiques

Interleukin-13 0
EAR11 protein, mouse EC 3.1.-
Ribonucleases EC 3.1.-

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

26-37

Subventions

Organisme : Wellcome Trust
ID : 100963
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105184326
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105178805
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105178811
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom

Références

Hardman, C. S., Panova, V. & McKenzie, A. N. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur. J. Immunol. 43, 488–498 (2013).
pubmed: 23169007 doi: 10.1002/eji.201242863
Cheng, D. et al. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am. J. respiratory Crit. Care Med. 190, 639–648 (2014).
doi: 10.1164/rccm.201403-0505OC
Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).
pubmed: 26762460 doi: 10.1038/nature16527
von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).
doi: 10.1038/nature16161
Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).
pubmed: 20200518 pmcid: 2862165 doi: 10.1038/nature08900
Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463, 540–544 (2010).
pubmed: 20023630 doi: 10.1038/nature08636
Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).
pubmed: 20534524 doi: 10.1073/pnas.1003988107
Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).
pubmed: 25088770 pmcid: 25088770 doi: 10.1016/j.immuni.2014.06.016
Halim, T. Y. et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat. Immunol. 17, 57–64 (2016).
pubmed: 26523868 doi: 10.1038/ni.3294
Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).
doi: 10.1016/j.immuni.2010.05.007
Wilson, M. S. & Wynn, T. A. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2, 103–121 (2009).
pubmed: 19129758 pmcid: 2675823 doi: 10.1038/mi.2008.85
Pesce, J. T. et al. Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog. 5, e1000393 (2009).
pubmed: 19381262 pmcid: 2663845 doi: 10.1371/journal.ppat.1000393
Pesce, J. T. et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5, e1000371 (2009).
pubmed: 19360123 pmcid: 2660425 doi: 10.1371/journal.ppat.1000371
Rodriguez-Sosa, M. et al. Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability. Infect. Immun. 70, 3656–3664 (2002).
pubmed: 12065507 pmcid: 128095 doi: 10.1128/IAI.70.7.3656-3664.2002
Varin, A., Mukhopadhyay, S., Herbein, G. & Gordon, S. Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115, 353–362 (2010).
pubmed: 19880493 pmcid: 2808158 doi: 10.1182/blood-2009-08-236711
Allen, J. E., Sutherland, T. E. & Ruckerl, D. IL-17 and neutrophils: unexpected players in the type 2 immune response. Curr. Opin. Immunol. 34, 99–106 (2015).
pubmed: 25794823 doi: 10.1016/j.coi.2015.03.001
Bonne-Annee, S. et al. Human and mouse macrophages collaborate with neutrophils to kill larval Strongyloides stercoralis. Infect. Immun. 81, 3346–3355 (2013).
pubmed: 23798541 pmcid: 3754234 doi: 10.1128/IAI.00625-13
Chen, F. et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946 (2014).
pubmed: 25173346 pmcid: 4479254 doi: 10.1038/ni.2984
Sutherland, T. E. et al. Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nat. Immunol. 15, 1116–1125 (2014).
pubmed: 25326751 pmcid: 4338525 doi: 10.1038/ni.3023
Pesce, J. T. et al. Neutrophils clear bacteria associated with parasitic nematodes augmenting the development of an effective Th2-type response. J. Immunol. 180, 464–474 (2008).
pubmed: 18097048 pmcid: 2288648 doi: 10.4049/jimmunol.180.1.464
Al-Qaoud, K. M. et al. A new mechanism for IL-5-dependent helminth control: neutrophil accumulation and neutrophil-mediated worm encapsulation in murine filariasis are abolished in the absence of IL-5. Int Immunol. 12, 899–908 (2000).
pubmed: 10837417 doi: 10.1093/intimm/12.6.899
Malik, A. & Batra, J. K. Antimicrobial activity of human eosinophil granule proteins: involvement in host defence against pathogens. Crit. Rev. Microbiol 38, 168–181 (2012).
pubmed: 22239733 doi: 10.3109/1040841X.2011.645519
Acharya, K. R. & Ackerman, S. J. Eosinophil granule proteins: form and function. J. Biol. Chem. 289, 17406–17415 (2014).
pubmed: 24802755 pmcid: 4067173 doi: 10.1074/jbc.R113.546218
Koh, G. C., Shek, L. P., Goh, D. Y., Van Bever, H. & Koh, D. S. Eosinophil cationic protein: is it useful in asthma? A systematic review. Respiratory Med. 101, 696–705 (2007).
doi: 10.1016/j.rmed.2006.08.012
Yang, D. et al. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102, 3396–3403 (2003).
pubmed: 12855582 doi: 10.1182/blood-2003-01-0151
Torrent, M., Navarro, S., Moussaoui, M., Nogues, M. V. & Boix, E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47, 3544–3555 (2008).
pubmed: 18293932 doi: 10.1021/bi702065b
Domachowske, J. B., Bonville, C. A., Dyer, K. D. & Rosenberg, H. F. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res 26, 5327–5332 (1998).
pubmed: 9826755 pmcid: 147995 doi: 10.1093/nar/26.23.5327
Domachowske, J. B., Dyer, K. D., Adams, A. G., Leto, T. L. & Rosenberg, H. F. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26, 3358–3363 (1998).
pubmed: 9649619 pmcid: 147714 doi: 10.1093/nar/26.14.3358
Ackerman, S. J., Gleich, G. J., Loegering, D. A., Richardson, B. A. & Butterworth, A. E. Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am. J. Trop. Med Hyg. 34, 735–745 (1985).
pubmed: 4025686 doi: 10.4269/ajtmh.1985.34.735
Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).
pubmed: 11754819 doi: 10.1016/S1074-7613(01)00243-6
Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).
pubmed: 16286016 pmcid: 16286016 doi: 10.1016/j.immuni.2005.09.015
Rickel, E. A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181, 4299–4310 (2008).
pubmed: 18768888 doi: 10.4049/jimmunol.181.6.4299
Enoksson, M. et al. Intraperitoneal influx of neutrophils in response to IL-33 is mast cell-dependent. Blood 121, 530–536 (2013).
pubmed: 23093619 doi: 10.1182/blood-2012-05-434209
Barlow, J. L. et al. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J. Allergy Clin. Immunol. 132, 933–941 (2013).
pubmed: 23810766 doi: 10.1016/j.jaci.2013.05.012
Yamada, K. J. et al. Eosinophil-associated ribonuclease 11 is a macrophage chemoattractant. J. Biol. Chem. 290, 8863–8875 (2015).
pubmed: 25713137 pmcid: 4423678 doi: 10.1074/jbc.M114.626648
Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).
pubmed: 4123412 pmcid: 4123412 doi: 10.1016/j.immuni.2014.06.008
Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).
pubmed: 31367040 pmcid: 6707815 doi: 10.1038/s41586-019-1450-6
Cormier, S. A. et al. T(H)2-mediated pulmonary inflammation leads to the differential expression of ribonuclease genes by alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 27, 678–687 (2002).
pubmed: 12444027 doi: 10.1165/rcmb.4882
Wilkinson, P. C. Random locomotion; chemotaxis and chemokinesis. A guide to terms defining cell locomotion. Immunol. Today 6, 273–278 (1985).
pubmed: 25290568 doi: 10.1016/0167-5699(85)90066-0
Jablonski, K. A. et al. Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE 10, e0145342 (2015).
pubmed: 26699615 pmcid: 4689374 doi: 10.1371/journal.pone.0145342
Lu, L. et al. Time Series miRNA-mRNA integrated analysis reveals critical miRNAs and targets in macrophage polarization. Sci. Rep. 6, 37446 (2016).
pubmed: 27981970 pmcid: 5159803 doi: 10.1038/srep37446
Cormier, S. A. et al. Mouse eosinophil-associated ribonucleases: a unique subfamily expressed during hematopoiesis. Mamm. Genome 12, 352–361 (2001).
pubmed: 11331942 doi: 10.1007/s003350020007
Larson, K. A. et al. Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily. Proc. Natl Acad. Sci. USA 93, 12370–12375 (1996).
pubmed: 8901588 doi: 10.1073/pnas.93.22.12370
Zhang, J., Dyer, K. D. & Rosenberg, H. F. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc. Natl Acad. Sci. USA 97, 4701–4706 (2000).
pubmed: 10758160 doi: 10.1073/pnas.080071397
Panov, K. I. et al. Ribonuclease A mutant His119 Asn: the role of histidine in catalysis. FEBS Lett. 398, 57–60 (1996).
pubmed: 8946953 doi: 10.1016/S0014-5793(96)01173-8
Di Valentin, E. et al. New asthma biomarkers: lessons from murine models of acute and chronic asthma. American journal of physiology. Lung Cell. Mol. Physiol. 296, L185–L197 (2009).
doi: 10.1152/ajplung.90367.2008
Louten, J. et al. Biomarkers of disease and treatment in murine and cynomolgus models of chronic asthma. Biomark. Insights 7, 87–104 (2012).
pubmed: 22837640 pmcid: 3403565 doi: 10.4137/BMI.S9776
Cautivo, K. M. & Molofsky, A. B. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells. Eur. J. Immunol. 46, 1315–1325 (2016).
pubmed: 27120716 pmcid: 5052033 doi: 10.1002/eji.201545562
Saluzzo, S. et al. First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep. 18, 1893–1905 (2017).
pubmed: 28228256 pmcid: 5329122 doi: 10.1016/j.celrep.2017.01.071
Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).
pubmed: 23420878 pmcid: 3600903 doi: 10.1084/jem.20121964
Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).
pubmed: 21566158 pmcid: 3128495 doi: 10.1126/science.1204351
Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).
pubmed: 16226499 doi: 10.1016/j.immuni.2005.10.001
Linehan, S. A. et al. IL-4 receptor signaling is required for mannose receptor expression by macrophages recruited to granulomata but not resident cells in mice infected with Schistosoma mansoni. Lab Investig 83, 1223–1231 (2003).
pubmed: 12920251 doi: 10.1097/01.LAB.0000081392.93701.6F
Heller, N. M. et al. Type I IL-4Rs selectively activate IRS-2 to induce target gene expression in macrophages. Sci. Signal 1, ra17 (2008).
pubmed: 19109239 pmcid: 2739727 doi: 10.1126/scisignal.1164795
Liu, H. et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res 46, 6069–6086 (2018).
pubmed: 29771377 pmcid: 6159523 doi: 10.1093/nar/gky401
Chen, F. et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med 18, 260–266 (2012).
pubmed: 22245779 pmcid: 3274634 doi: 10.1038/nm.2628
Bouchery, T. et al. Hookworms evade host immunity by secreting a deoxyribonuclease to degrade neutrophil extracellular traps. Cell Host Microbe 27, 277–289 e276 (2020).
pubmed: 32053791 doi: 10.1016/j.chom.2020.01.011
Woytschak, J. et al. Type 2 interleukin-4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation. Immunity 45, 172–184 (2016).
pubmed: 27438770 doi: 10.1016/j.immuni.2016.06.025
Grigolato, F., Egholm, C., Impellizzieri, D., Arosio, P. & Boyman, O. Establishment of a scalable microfluidic assay for characterization of population-based neutrophil chemotaxis. Allergy. https://doi.org/10.1111/all.14195 (2020).
Impellizzieri, D. et al. IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. J. Allergy Clin. Immunol. 144, 267–279 e264 (2019).
pubmed: 30768990 doi: 10.1016/j.jaci.2019.01.042
Egholm, C., Heeb, L. E. M., Impellizzieri, D. & Boyman, O. The regulatory effects of interleukin-4 receptor signaling on neutrophils in type 2 immune responses. Front Immunol. 10, 2507 (2019).
pubmed: 31708926 pmcid: 6821784 doi: 10.3389/fimmu.2019.02507
Mould, A. W., Matthaei, K. I., Young, I. G. & Foster, P. S. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J. Clin. Investig 99, 1064–1071 (1997).
pubmed: 9062365 doi: 10.1172/JCI119234
Mishra, A., Hogan, S. P., Lee, J. J., Foster, P. S. & Rothenberg, M. E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Investig 103, 1719–1727 (1999).
pubmed: 10377178 doi: 10.1172/JCI6560
Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).
pubmed: 3795960 pmcid: 3795960 doi: 10.1038/nature12526
Mayadas, T. N., Cullere, X. & Lowell, C. A. The multifaceted functions of neutrophils. Annu Rev. Pathol. 9, 181–218 (2014).
pubmed: 24050624 doi: 10.1146/annurev-pathol-020712-164023

Auteurs

Veera Panova (V)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.
The Francis Crick Institute, London, NW1 1AT, UK.

Mayuri Gogoi (M)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Noe Rodriguez-Rodriguez (N)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Meera Sivasubramaniam (M)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Helen E Jolin (HE)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Morgan W D Heycock (MWD)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Jennifer A Walker (JA)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Batika M J Rana (BMJ)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Lesley F Drynan (LF)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Michael Hodskinson (M)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Richard Pannell (R)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Gareth King (G)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Mark Wing (M)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK.

Andrew J Easton (AJ)

School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.

Caroline A Oedekoven (CA)

Stem Cell Institute, Clifford-Allbutt Building, Hills Road, Cambridge, CB2 0AH, UK.

David G Kent (DG)

Stem Cell Institute, Clifford-Allbutt Building, Hills Road, Cambridge, CB2 0AH, UK.
Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.

Padraic G Fallon (PG)

Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.

Jillian L Barlow (JL)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK. jbarlow@mrc-lmb.cam.ac.uk.
Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK. jbarlow@mrc-lmb.cam.ac.uk.

Andrew N J McKenzie (ANJ)

Medical Research Council, Laboratory of Molecular Biology, Cambridge, Cambridgeshire, CB2 0QH, UK. anm@mrc-lmb.cam.ac.uk.

Articles similaires

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH