Group-2 innate lymphoid cell-dependent regulation of tissue neutrophil migration by alternatively activated macrophage-secreted Ear11.
Animals
Dendritic Cells
/ immunology
Eosinophils
/ immunology
Immunity, Innate
Immunomodulation
Immunophenotyping
Interleukin-13
/ biosynthesis
Lung
/ immunology
Lymphocytes
/ physiology
Macrophage Activation
/ immunology
Macrophages
/ physiology
Mice
Mice, Transgenic
Neutrophil Infiltration
/ immunology
Neutrophils
/ physiology
Ribonucleases
/ biosynthesis
Journal
Mucosal immunology
ISSN: 1935-3456
Titre abrégé: Mucosal Immunol
Pays: United States
ID NLM: 101299742
Informations de publication
Date de publication:
01 2021
01 2021
Historique:
received:
28
02
2020
accepted:
22
04
2020
revised:
13
04
2020
pubmed:
28
5
2020
medline:
13
10
2021
entrez:
28
5
2020
Statut:
ppublish
Résumé
Type-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation. We now demonstrate that type-2 immune-associated neutrophil infiltration is regulated by the mouse RNase A homologue, eosinophil-associated ribonuclease 11 (Ear11), which is secreted by AAM downstream of IL-25-stimulated ILC2. Transgenic overexpression of Ear11 resulted in tissue neutrophilia, whereas Ear11-deficient mice have fewer resting tissue neutrophils, whilst other type-2 immune responses are not impaired. Notably, administration of recombinant mouse Ear11 increases neutrophil motility and recruitment. Thus, Ear11 helps maintain tissue neutrophils at homoeostasis and during type-2 reactions when chemokine-producing classically activated macrophages are infrequently elicited.
Identifiants
pubmed: 32457448
doi: 10.1038/s41385-020-0298-2
pii: S1933-0219(22)00105-2
pmc: PMC7790759
mid: EMS108830
doi:
Substances chimiques
Interleukin-13
0
EAR11 protein, mouse
EC 3.1.-
Ribonucleases
EC 3.1.-
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
26-37Subventions
Organisme : Wellcome Trust
ID : 100963
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105184326
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105178805
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_U105178811
Pays : United Kingdom
Organisme : Wellcome Trust
Pays : United Kingdom
Références
Hardman, C. S., Panova, V. & McKenzie, A. N. IL-33 citrine reporter mice reveal the temporal and spatial expression of IL-33 during allergic lung inflammation. Eur. J. Immunol. 43, 488–498 (2013).
pubmed: 23169007
doi: 10.1002/eji.201242863
Cheng, D. et al. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. Am. J. respiratory Crit. Care Med. 190, 639–648 (2014).
doi: 10.1164/rccm.201403-0505OC
Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230 (2016).
pubmed: 26762460
doi: 10.1038/nature16527
von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).
doi: 10.1038/nature16161
Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).
pubmed: 20200518
pmcid: 2862165
doi: 10.1038/nature08900
Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 463, 540–544 (2010).
pubmed: 20023630
doi: 10.1038/nature08636
Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).
pubmed: 20534524
doi: 10.1073/pnas.1003988107
Oliphant, C. J. et al. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4(+) T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41, 283–295 (2014).
pubmed: 25088770
pmcid: 25088770
doi: 10.1016/j.immuni.2014.06.016
Halim, T. Y. et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat. Immunol. 17, 57–64 (2016).
pubmed: 26523868
doi: 10.1038/ni.3294
Gordon, S. & Martinez, F. O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).
doi: 10.1016/j.immuni.2010.05.007
Wilson, M. S. & Wynn, T. A. Pulmonary fibrosis: pathogenesis, etiology and regulation. Mucosal Immunol. 2, 103–121 (2009).
pubmed: 19129758
pmcid: 2675823
doi: 10.1038/mi.2008.85
Pesce, J. T. et al. Retnla (relmalpha/fizz1) suppresses helminth-induced Th2-type immunity. PLoS Pathog. 5, e1000393 (2009).
pubmed: 19381262
pmcid: 2663845
doi: 10.1371/journal.ppat.1000393
Pesce, J. T. et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog. 5, e1000371 (2009).
pubmed: 19360123
pmcid: 2660425
doi: 10.1371/journal.ppat.1000371
Rodriguez-Sosa, M. et al. Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability. Infect. Immun. 70, 3656–3664 (2002).
pubmed: 12065507
pmcid: 128095
doi: 10.1128/IAI.70.7.3656-3664.2002
Varin, A., Mukhopadhyay, S., Herbein, G. & Gordon, S. Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115, 353–362 (2010).
pubmed: 19880493
pmcid: 2808158
doi: 10.1182/blood-2009-08-236711
Allen, J. E., Sutherland, T. E. & Ruckerl, D. IL-17 and neutrophils: unexpected players in the type 2 immune response. Curr. Opin. Immunol. 34, 99–106 (2015).
pubmed: 25794823
doi: 10.1016/j.coi.2015.03.001
Bonne-Annee, S. et al. Human and mouse macrophages collaborate with neutrophils to kill larval Strongyloides stercoralis. Infect. Immun. 81, 3346–3355 (2013).
pubmed: 23798541
pmcid: 3754234
doi: 10.1128/IAI.00625-13
Chen, F. et al. Neutrophils prime a long-lived effector macrophage phenotype that mediates accelerated helminth expulsion. Nat. Immunol. 15, 938–946 (2014).
pubmed: 25173346
pmcid: 4479254
doi: 10.1038/ni.2984
Sutherland, T. E. et al. Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nat. Immunol. 15, 1116–1125 (2014).
pubmed: 25326751
pmcid: 4338525
doi: 10.1038/ni.3023
Pesce, J. T. et al. Neutrophils clear bacteria associated with parasitic nematodes augmenting the development of an effective Th2-type response. J. Immunol. 180, 464–474 (2008).
pubmed: 18097048
pmcid: 2288648
doi: 10.4049/jimmunol.180.1.464
Al-Qaoud, K. M. et al. A new mechanism for IL-5-dependent helminth control: neutrophil accumulation and neutrophil-mediated worm encapsulation in murine filariasis are abolished in the absence of IL-5. Int Immunol. 12, 899–908 (2000).
pubmed: 10837417
doi: 10.1093/intimm/12.6.899
Malik, A. & Batra, J. K. Antimicrobial activity of human eosinophil granule proteins: involvement in host defence against pathogens. Crit. Rev. Microbiol 38, 168–181 (2012).
pubmed: 22239733
doi: 10.3109/1040841X.2011.645519
Acharya, K. R. & Ackerman, S. J. Eosinophil granule proteins: form and function. J. Biol. Chem. 289, 17406–17415 (2014).
pubmed: 24802755
pmcid: 4067173
doi: 10.1074/jbc.R113.546218
Koh, G. C., Shek, L. P., Goh, D. Y., Van Bever, H. & Koh, D. S. Eosinophil cationic protein: is it useful in asthma? A systematic review. Respiratory Med. 101, 696–705 (2007).
doi: 10.1016/j.rmed.2006.08.012
Yang, D. et al. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102, 3396–3403 (2003).
pubmed: 12855582
doi: 10.1182/blood-2003-01-0151
Torrent, M., Navarro, S., Moussaoui, M., Nogues, M. V. & Boix, E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47, 3544–3555 (2008).
pubmed: 18293932
doi: 10.1021/bi702065b
Domachowske, J. B., Bonville, C. A., Dyer, K. D. & Rosenberg, H. F. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus. Nucleic Acids Res 26, 5327–5332 (1998).
pubmed: 9826755
pmcid: 147995
doi: 10.1093/nar/26.23.5327
Domachowske, J. B., Dyer, K. D., Adams, A. G., Leto, T. L. & Rosenberg, H. F. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res 26, 3358–3363 (1998).
pubmed: 9649619
pmcid: 147714
doi: 10.1093/nar/26.14.3358
Ackerman, S. J., Gleich, G. J., Loegering, D. A., Richardson, B. A. & Butterworth, A. E. Comparative toxicity of purified human eosinophil granule cationic proteins for schistosomula of Schistosoma mansoni. Am. J. Trop. Med Hyg. 34, 735–745 (1985).
pubmed: 4025686
doi: 10.4269/ajtmh.1985.34.735
Fort, M. M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).
pubmed: 11754819
doi: 10.1016/S1074-7613(01)00243-6
Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).
pubmed: 16286016
pmcid: 16286016
doi: 10.1016/j.immuni.2005.09.015
Rickel, E. A. et al. Identification of functional roles for both IL-17RB and IL-17RA in mediating IL-25-induced activities. J. Immunol. 181, 4299–4310 (2008).
pubmed: 18768888
doi: 10.4049/jimmunol.181.6.4299
Enoksson, M. et al. Intraperitoneal influx of neutrophils in response to IL-33 is mast cell-dependent. Blood 121, 530–536 (2013).
pubmed: 23093619
doi: 10.1182/blood-2012-05-434209
Barlow, J. L. et al. IL-33 is more potent than IL-25 in provoking IL-13-producing nuocytes (type 2 innate lymphoid cells) and airway contraction. J. Allergy Clin. Immunol. 132, 933–941 (2013).
pubmed: 23810766
doi: 10.1016/j.jaci.2013.05.012
Yamada, K. J. et al. Eosinophil-associated ribonuclease 11 is a macrophage chemoattractant. J. Biol. Chem. 290, 8863–8875 (2015).
pubmed: 25713137
pmcid: 4423678
doi: 10.1074/jbc.M114.626648
Murray, P. J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).
pubmed: 4123412
pmcid: 4123412
doi: 10.1016/j.immuni.2014.06.008
Wellenstein, M. D. et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature 572, 538–542 (2019).
pubmed: 31367040
pmcid: 6707815
doi: 10.1038/s41586-019-1450-6
Cormier, S. A. et al. T(H)2-mediated pulmonary inflammation leads to the differential expression of ribonuclease genes by alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 27, 678–687 (2002).
pubmed: 12444027
doi: 10.1165/rcmb.4882
Wilkinson, P. C. Random locomotion; chemotaxis and chemokinesis. A guide to terms defining cell locomotion. Immunol. Today 6, 273–278 (1985).
pubmed: 25290568
doi: 10.1016/0167-5699(85)90066-0
Jablonski, K. A. et al. Novel Markers to Delineate Murine M1 and M2 Macrophages. PLoS ONE 10, e0145342 (2015).
pubmed: 26699615
pmcid: 4689374
doi: 10.1371/journal.pone.0145342
Lu, L. et al. Time Series miRNA-mRNA integrated analysis reveals critical miRNAs and targets in macrophage polarization. Sci. Rep. 6, 37446 (2016).
pubmed: 27981970
pmcid: 5159803
doi: 10.1038/srep37446
Cormier, S. A. et al. Mouse eosinophil-associated ribonucleases: a unique subfamily expressed during hematopoiesis. Mamm. Genome 12, 352–361 (2001).
pubmed: 11331942
doi: 10.1007/s003350020007
Larson, K. A. et al. Two highly homologous ribonuclease genes expressed in mouse eosinophils identify a larger subgroup of the mammalian ribonuclease superfamily. Proc. Natl Acad. Sci. USA 93, 12370–12375 (1996).
pubmed: 8901588
doi: 10.1073/pnas.93.22.12370
Zhang, J., Dyer, K. D. & Rosenberg, H. F. Evolution of the rodent eosinophil-associated RNase gene family by rapid gene sorting and positive selection. Proc. Natl Acad. Sci. USA 97, 4701–4706 (2000).
pubmed: 10758160
doi: 10.1073/pnas.080071397
Panov, K. I. et al. Ribonuclease A mutant His119 Asn: the role of histidine in catalysis. FEBS Lett. 398, 57–60 (1996).
pubmed: 8946953
doi: 10.1016/S0014-5793(96)01173-8
Di Valentin, E. et al. New asthma biomarkers: lessons from murine models of acute and chronic asthma. American journal of physiology. Lung Cell. Mol. Physiol. 296, L185–L197 (2009).
doi: 10.1152/ajplung.90367.2008
Louten, J. et al. Biomarkers of disease and treatment in murine and cynomolgus models of chronic asthma. Biomark. Insights 7, 87–104 (2012).
pubmed: 22837640
pmcid: 3403565
doi: 10.4137/BMI.S9776
Cautivo, K. M. & Molofsky, A. B. Regulation of metabolic health and adipose tissue function by group 2 innate lymphoid cells. Eur. J. Immunol. 46, 1315–1325 (2016).
pubmed: 27120716
pmcid: 5052033
doi: 10.1002/eji.201545562
Saluzzo, S. et al. First-breath-induced type 2 pathways shape the lung immune environment. Cell Rep. 18, 1893–1905 (2017).
pubmed: 28228256
pmcid: 5329122
doi: 10.1016/j.celrep.2017.01.071
Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).
pubmed: 23420878
pmcid: 3600903
doi: 10.1084/jem.20121964
Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).
pubmed: 21566158
pmcid: 3128495
doi: 10.1126/science.1204351
Mantovani, A., Sica, A. & Locati, M. Macrophage polarization comes of age. Immunity 23, 344–346 (2005).
pubmed: 16226499
doi: 10.1016/j.immuni.2005.10.001
Linehan, S. A. et al. IL-4 receptor signaling is required for mannose receptor expression by macrophages recruited to granulomata but not resident cells in mice infected with Schistosoma mansoni. Lab Investig 83, 1223–1231 (2003).
pubmed: 12920251
doi: 10.1097/01.LAB.0000081392.93701.6F
Heller, N. M. et al. Type I IL-4Rs selectively activate IRS-2 to induce target gene expression in macrophages. Sci. Signal 1, ra17 (2008).
pubmed: 19109239
pmcid: 2739727
doi: 10.1126/scisignal.1164795
Liu, H. et al. Alternative splicing analysis in human monocytes and macrophages reveals MBNL1 as major regulator. Nucleic Acids Res 46, 6069–6086 (2018).
pubmed: 29771377
pmcid: 6159523
doi: 10.1093/nar/gky401
Chen, F. et al. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nat. Med 18, 260–266 (2012).
pubmed: 22245779
pmcid: 3274634
doi: 10.1038/nm.2628
Bouchery, T. et al. Hookworms evade host immunity by secreting a deoxyribonuclease to degrade neutrophil extracellular traps. Cell Host Microbe 27, 277–289 e276 (2020).
pubmed: 32053791
doi: 10.1016/j.chom.2020.01.011
Woytschak, J. et al. Type 2 interleukin-4 receptor signaling in neutrophils antagonizes their expansion and migration during infection and inflammation. Immunity 45, 172–184 (2016).
pubmed: 27438770
doi: 10.1016/j.immuni.2016.06.025
Grigolato, F., Egholm, C., Impellizzieri, D., Arosio, P. & Boyman, O. Establishment of a scalable microfluidic assay for characterization of population-based neutrophil chemotaxis. Allergy. https://doi.org/10.1111/all.14195 (2020).
Impellizzieri, D. et al. IL-4 receptor engagement in human neutrophils impairs their migration and extracellular trap formation. J. Allergy Clin. Immunol. 144, 267–279 e264 (2019).
pubmed: 30768990
doi: 10.1016/j.jaci.2019.01.042
Egholm, C., Heeb, L. E. M., Impellizzieri, D. & Boyman, O. The regulatory effects of interleukin-4 receptor signaling on neutrophils in type 2 immune responses. Front Immunol. 10, 2507 (2019).
pubmed: 31708926
pmcid: 6821784
doi: 10.3389/fimmu.2019.02507
Mould, A. W., Matthaei, K. I., Young, I. G. & Foster, P. S. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J. Clin. Investig 99, 1064–1071 (1997).
pubmed: 9062365
doi: 10.1172/JCI119234
Mishra, A., Hogan, S. P., Lee, J. J., Foster, P. S. & Rothenberg, M. E. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Investig 103, 1719–1727 (1999).
pubmed: 10377178
doi: 10.1172/JCI6560
Nussbaum, J. C. et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature 502, 245–248 (2013).
pubmed: 3795960
pmcid: 3795960
doi: 10.1038/nature12526
Mayadas, T. N., Cullere, X. & Lowell, C. A. The multifaceted functions of neutrophils. Annu Rev. Pathol. 9, 181–218 (2014).
pubmed: 24050624
doi: 10.1146/annurev-pathol-020712-164023