Exergames for balance dysfunction in neurological disability: a meta-analysis with meta-regression.


Journal

Journal of neurology
ISSN: 1432-1459
Titre abrégé: J Neurol
Pays: Germany
ID NLM: 0423161

Informations de publication

Date de publication:
Sep 2021
Historique:
received: 08 04 2020
accepted: 13 05 2020
revised: 11 05 2020
pubmed: 25 5 2020
medline: 14 8 2021
entrez: 25 5 2020
Statut: ppublish

Résumé

To evaluate systematically the efficacy of exergames for balance dysfunction in neurological conditions and to identify factors of exergaming protocols that may influence their effects. We searched electronic databases for randomized clinical trials investigating the effect of commercial exergames versus alternative interventions on balance dysfunction as assessed by standard clinical scales in adults with acquired neurological disabilities. Standardized mean differences (Hedge's g) were calculated with random-effects models. Subgroup analyses and meta-regression were run to explore potential modifiers of effect size. Out of 106 screened articles, 41 fulfilled criteria for meta-analysis, with a total of 1223 patients included. Diseases under investigation were stroke, Parkinson's disease, multiple sclerosis, mild cognitive impairment or early Alzheimer's disease, traumatic brain injury, and myelopathy. The pooled effect size of exergames on balance was moderate (g = 0.43, p < 0.001), with higher frequency (number of sessions per week) associated with larger effect (β = 0.24, p = 0.01). There was no effect mediated by the overall duration of the intervention and intensity of a single session. The beneficial effect of exergames could be maintained for at least 4 weeks after discontinuation, but their retention effect was specifically explored in only 11 studies, thus requiring future investigation. Mild to moderate adverse events were reported in a minority of studies. We estimated a low risk of bias, mainly attributable to the lack of double-blindness and not reporting intention-to-treat analysis. The pooled evidence suggests that exergames improve balance dysfunction and are safe in several neurological conditions. The findings of high-frequency interventions associated with larger effect size, together with a possible sustained effect of exergaming, may guide treatment decisions and inform future research.

Identifiants

pubmed: 32447551
doi: 10.1007/s00415-020-09918-w
pii: 10.1007/s00415-020-09918-w
doi:

Types de publication

Journal Article Meta-Analysis Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

3223-3237

Subventions

Organisme : Associazione Italiana Sclerosi Multipla
ID : 2017/R/22

Informations de copyright

© 2020. Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Tinetti ME, Kumar C (2010) The patient who falls: “It’s Always a Trade-off”. JAMA 303:258
pubmed: 20085954 pmcid: 3740370 doi: 10.1001/jama.2009.2024
Stolze H, Klebe S, Zechlin C et al (2004) Falls in frequent neurological diseases. J Neurol 251:79–84
pubmed: 14999493 doi: 10.1007/s00415-004-0276-8
Mack S, Kandel ER, Jessell TM et al (2013) Principles of neural science, 5th edn. McGraw Hill Professional, New York
McNeely ME, Duncan RP, Earhart GM (2012) Medication improves balance and complex gait performance in Parkinson disease. Gait Posture 36:144–148
pubmed: 22418585 pmcid: 3372628 doi: 10.1016/j.gaitpost.2012.02.009
Chan DM (2020) Zoellick MRB world report on disability. https://www.who.int . Accessed 20 Feb 2020
Read JL, Shortell SM (2011) Interactive games to promote behavior change in prevention and treatment. JAMA 305:1704–1705
pubmed: 21447802 doi: 10.1001/jama.2011.408
Adamovich SV, Fluet GG, Tunik E, Merians AS (2009) Sensorimotor training in virtual reality: a review. NeuroRehabilitation 25:29
pubmed: 19713617 pmcid: 2819065 doi: 10.3233/NRE-2009-0497
Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. Open Med Peer-Rev Indep Open-Access J 3:e123–130
O’Sullivan D, Wilk S, Michalowski W, Farion K (2013) Using PICO to align medical evidence with MDs decision making models. Stud Health Technol Inform 192:1057
pubmed: 23920831
Visser JE, Carpenter MG, van der Kooij H, Bloem BR (2008) The clinical utility of posturography. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 119:2424–2436
doi: 10.1016/j.clinph.2008.07.220
Cohen J (1992) A power primer. Psychol Bull 112:155–159
pubmed: 19565683 doi: 10.1037/0033-2909.112.1.155
Chapter 10: Analysing data and undertaking meta-analyses. https://www.training.cochrane.org . Accessed 19 Feb 2020
Maher CG, Sherrington C, Herbert RD et al (2003) Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83:713–721
pubmed: 12882612 doi: 10.1093/ptj/83.8.713
Guyatt GH, Oxman AD, Schünemann HJ et al (2011) GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 64:380–382
pubmed: 21185693 doi: 10.1016/j.jclinepi.2010.09.011
Andrews JC, Schunemann HJ, Oxman AD et al (2013) GRADE guidelines: 15. Going from evidence to recommendation-determinants of a recommendation's direction and strength. J Clin Epidemiol 66:726–735
pubmed: 23570745 doi: 10.1016/j.jclinepi.2013.02.003
Barcala L, Grecco LAC, Colella F et al (2013) Visual biofeedback balance training using wii fit after stroke: a randomized controlled trial. J Phys Ther Sci 25:1027–1032
pubmed: 24259909 pmcid: 3820213 doi: 10.1589/jpts.25.1027
Bower KJ, Clark RA, McGinley JL et al (2014) Clinical feasibility of the Nintendo Wii
pubmed: 24668359 doi: 10.1177/0269215514527597
Brichetto G, Spallarossa P, de Carvalho MLL, Battaglia MA (2013) The effect of Nintendo® Wii® on balance in people with multiple sclerosis: a pilot randomized control study. Mult Scler 19:1219–1221
pubmed: 23322502 doi: 10.1177/1352458512472747
Cho KH, Lee KJ, Song CH (2012) Virtual-reality balance training with a video-game system improves dynamic balance in chronic stroke patients. Tohoku J Exp Med 228:69–74
pubmed: 22976384 doi: 10.1620/tjem.228.69
Choi HS, Shin WS, Bang DH, Choi SJ (2017) Effects of game-based constraint-induced movement therapy on balance in patients with stroke: a single-blind randomized controlled trial. Am J Phys Med Rehabil 96:184–190
pubmed: 27386814 doi: 10.1097/PHM.0000000000000567
Choi D, Choi W, Lee S (2018) Influence of Nintendo Wii fit balance game on visual perception, postural balance, and walking in stroke survivors: a pilot randomized clinical trial. Games Health J 7:377–384
doi: 10.1089/g4h.2017.0126
Cuthbert JP, Staniszewski K, Hays K et al (2014) Virtual reality-based therapy for the treatment of balance deficits in patients receiving inpatient rehabilitation for traumatic brain injury. Brain Inj 28:181–188
pubmed: 24456057 doi: 10.3109/02699052.2013.860475
de Oliveira Arnaut VAC, Macedo M, Pinto EB et al (2014) Virtual reality therapy in the treatment of HAM/TSP individuals: a randomized clinical trial. Revista Pesquisa em Fisioterapia 4:99–106
Fritz SL, Peters DM, Merlo AM, Donley J (2013) Active video-gaming effects on balance and mobility in individuals with chronic stroke: a randomized controlled trial. Top Stroke Rehabil 20:218–225
pubmed: 23841969 doi: 10.1310/tsr2003-218
Gandolfi M, Geroin C, Dimitrova E et al (2017) Virtual reality telerehabilitation for postural instability in Parkinson’s Disease: a multicenter, single-blind, randomized, controlled trial. BioMed Res Int 2017:1–11
doi: 10.1155/2017/7962826
Gil-Gómez JA, Lloréns R, Alcañiz M, Colomer C (2011) Effectiveness of a Wii balance board-based system (eBaViR) for balance rehabilitation: a pilot randomized clinical trial in patients with acquired brain injury. J NeuroEng Rehabil 8:30
pubmed: 21600066 pmcid: 3120756 doi: 10.1186/1743-0003-8-30
Golla A, Müller T, Wohlfarth K et al (2018) Home-based balance training using Wii Fit
pubmed: 30155268 pmcid: 6109315 doi: 10.1186/s40814-018-0334-0
Hung JW, Chou CX, Hsieh YW et al (2014) Randomized comparison trial of balance training by using exergaming and conventional weight-shift therapy in patients with chronic stroke. Arch Phys Med Rehabil 95:1629–1637
pubmed: 24862764 doi: 10.1016/j.apmr.2014.04.029
Hung JW, Chou CX, Chang HF et al (2017) Cognitive effects of weight-shifting controlled exergames in patients with chronic stroke: a pilot randomized comparison trial. Eur J Phys Rehabil Med 53:694–702
pubmed: 28382812 doi: 10.23736/S1973-9087.17.04516-6
Kannan L, Vora J, Bhatt T, Hughes SL (2019) Cognitive-motor exergaming for reducing fall risk in people with chronic stroke: a randomized controlled trial. NeuroRehabilitation 44:493–510
pubmed: 31256084 doi: 10.3233/NRE-182683
Karasu A, Batur E, Karataş G (2018) Effectiveness of Wii-based rehabilitation in stroke: a randomized controlled study. J Rehabil Med 50:406–412
pubmed: 29620137 doi: 10.2340/16501977-2331
Lee GH (2016) Effects of virtual reality exercise program on balance, emotion and quality of life in patients with cognitive decline. J Korean Phys Ther 28:355–363
doi: 10.18857/jkpt.2016.28.6.355
Lee HC, Huang CL, Ho SH, Sung WH (2017) The effect of a virtual reality game intervention on balance for patients with stroke: a randomized controlled trial. Games Health J 6:303–311
pubmed: 28771379 doi: 10.1089/g4h.2016.0109
Lee MM, Lee KJ, Song CH (2018) Game-based virtual reality canoe paddling training to improve postural balance and upper extremity function: a preliminary randomized controlled study of 30 patients with subacute stroke. Med Sci Monit 24:2590–2598
pubmed: 29702630 pmcid: 5944399 doi: 10.12659/MSM.906451
Liao YY, Yang YR, Cheng SJ et al (2015) Virtual reality-based training to improve obstacle-crossing performance and dynamic balance in patients with Parkinson’s Disease. Neurorehabil Neural Repair 29:658–667
pubmed: 25539782 doi: 10.1177/1545968314562111
Lozano-Quilis JA, Gil-Gómez H, Gil-Gómez JA et al (2014) Virtual rehabilitation for multiple sclerosis using a kinect-based system: randomized controlled trial. JMIR Serious Games 2:e12
pubmed: 25654242 pmcid: 4307818 doi: 10.2196/games.2933
Morone G, Tramontano M, Iosa M et al (2014) The efficacy of balance training with video game-based therapy in subacute stroke patients: a randomized controlled trial. BioMed Res Int 2014:1–6
Nilsagard YE, Forsberg AS, von Koch L (2013) Balance exercise for persons with multiple sclerosis using Wii games: a randomised, controlled multi-centre study. Mult Scler 19:209–216
pubmed: 22674972 doi: 10.1177/1352458512450088
Ortiz Gutiérrez R, Galán del Río F, Cano de la Cuerda R et al (2013) A telerehabilitation program by virtual reality-video games improves balance and postural control in multiple sclerosis patients. NeuroRehabilitation 33:545–554
doi: 10.3233/NRE-130995
Padala KP, Padala PR, Malloy TR et al (2012) Wii-fit for improving gait and balance in an assisted living facility: a pilot study. J Aging Res 2012:1–6
doi: 10.1155/2012/597573
Padala KP, Padala PR, Lensing SY et al (2017) Home-based exercise program improves balance and fear of falling in community-dwelling older adults with mild Alzheimer’s disease: a pilot study. J Alzheimers Dis 59:565–574
pubmed: 28655135 doi: 10.3233/JAD-170120
Park DS, Lee DG, Lee K, Lee G (2017) Effects of virtual reality training using xbox kinect on motor function in stroke survivors: a preliminary study. J Stroke Cerebrovasc Dis Off J Natl Stroke Assoc 26:2313–2319
doi: 10.1016/j.jstrokecerebrovasdis.2017.05.019
Pompeu JE, Mendes FAS, Silva KG et al (2012) Effect of Nintendo Wii
pubmed: 22898575 doi: 10.1016/j.physio.2012.06.004
Prosperini L, Fortuna D, Giannì C et al (2013) Home-based balance training using the wii balance board: a randomized, crossover pilot study in multiple sclerosis. Neurorehabil Neural Repair 27:516–525
pubmed: 23478168 doi: 10.1177/1545968313478484
Ribas CG, Alves da Silva L, Corrêa MR et al (2017) Effectiveness of exergaming in improving functional balance, fatigue and quality of life in Parkinson’s disease: a pilot randomized controlled trial. Parkinsonism Relat Disord 38:13–18
pubmed: 28190675 doi: 10.1016/j.parkreldis.2017.02.006
Santos P, Machado T, Santos L et al (2019) Efficacy of the Nintendo Wii combination with Conventional Exercises in the rehabilitation of individuals with Parkinson’s disease: a randomized clinical trial. NeuroRehabilitation 45:255–263
pubmed: 31498138 doi: 10.3233/NRE-192771
Shih MC, Wang RY, Cheng SJ, Yang YR (2016) Effects of a balance-based exergaming intervention using the Kinect sensor on posture stability in individuals with Parkinson’s disease: a single-blinded randomized controlled trial. J NeuroEngineering Rehabil 13:78
doi: 10.1186/s12984-016-0185-y
Song GB, Park EC (2015) Effect of virtual reality games on stroke patients’ balance, gait, depression, and interpersonal relationships. J Phys Ther Sci 27:2057–2060
pubmed: 26311925 pmcid: 4540816 doi: 10.1589/jpts.27.2057
Song J, Paul SS, Caetano MJD et al (2018) Home-based step training using videogame technology in people with Parkinson’s disease: a single-blinded randomised controlled trial. Clin Rehabil 32:299–311
pubmed: 28745063 doi: 10.1177/0269215517721593
Straudi S, Severini G, Sabbagh Charabati A et al (2017) The effects of video game therapy on balance and attention in chronic ambulatory traumatic brain injury: an exploratory study. BMC Neurol 17:86
pubmed: 28490322 pmcid: 5424286 doi: 10.1186/s12883-017-0871-9
Tak S, Choi W, Lee S (2015) Game-based virtual reality training improves sitting balance after spinal cord injury: a single-blinded, randomized controlled trial. Med Sci Technol 56:53–59
doi: 10.12659/MST.894514
Thomas S, Fazakarley L, Thomas PW et al (2017) Mii-vitaliSe: a pilot randomised controlled trial of a home gaming system (Nintendo Wii) to increase activity levels, vitality and well-being in people with multiple sclerosis. BMJ Open 7:e016966
pubmed: 28954791 pmcid: 5623500 doi: 10.1136/bmjopen-2017-016966
Tollár J, Nagy F, Hortobágyi T (2019) Vastly different exercise programs similarly improve parkinsonian symptoms: a randomized clinical trial. Gerontology 65:120–127
pubmed: 30368495 doi: 10.1159/000493127
Yang YR, Chen YH, Chang HC et al (2015) Effects of interactive visual feedback training on post-stroke pusher syndrome: a pilot randomized controlled study. Clin Rehabil 29:987–993
pubmed: 25547112 doi: 10.1177/0269215514564898
Yatar GI, Yildirim SA (2015) Wii Fit balance training or progressive balance training in patients with chronic stroke: a randomised controlled trial. J Phys Ther Sci 27:1145–1151
pubmed: 25995576 pmcid: 4433997 doi: 10.1589/jpts.27.1145
Yazgan YZ, Tarakci E, Tarakci D et al (2020) Comparison of the effects of two different exergaming systems on balance, functionality, fatigue, and quality of life in people with multiple sclerosis: a randomized controlled trial. Mult Scler Relat Disord 39:101902
doi: 10.1016/j.msard.2019.101902
Jalink MB, Heineman E, Pierie JPEN, ten Cate Hoedemaker HO (2014) Nintendo related injuries and other problems: review. BMJ 349:g7267
pubmed: 25515525 pmcid: 4267699 doi: 10.1136/bmj.g7267
Cano Porras D, Siemonsma P, Inzelberg R et al (2018) Advantages of virtual reality in the rehabilitation of balance and gait: systematic review. Neurology 90:1017–1025
pubmed: 29720544 doi: 10.1212/WNL.0000000000005603
Goble DJ, Cone BL, Fling BW (2014) Using the Wii Fit as a tool for balance assessment and neurorehabilitation: the first half decade of “Wii-search”. J Neuroeng Rehabil 11:12
pubmed: 24507245 pmcid: 3922272 doi: 10.1186/1743-0003-11-12
Taylor MJD, Griffin M (2015) The use of gaming technology for rehabilitation in people with multiple sclerosis. Mult Scler 21:355–371
pubmed: 25533296 doi: 10.1177/1352458514563593
Ravenek KE, Wolfe DL, Hitzig SL (2016) A scoping review of video gaming in rehabilitation. Disabil Rehabil Assist Technol 11:445–453
pubmed: 25815680
Laver KE, Lange B, George S et al (2017) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 11:CD008349
pubmed: 29156493
Casuso-Holgado MJ, Martín-Valero R, Carazo AF et al (2018) Effectiveness of virtual reality training for balance and gait rehabilitation in people with multiple sclerosis: a systematic review and meta-analysis. Clin Rehabil 32:1220–1234
pubmed: 29651873 doi: 10.1177/0269215518768084
Santos P, Scaldaferri G, Santos L et al (2019) Effects of the Nintendo Wii training on balance rehabilitation and quality of life of patients with Parkinson’s disease: a systematic review and meta-analysis. NeuroRehabilitation 44:569–577
pubmed: 31256088 doi: 10.3233/NRE-192700
Booth V, Masud T, Connell L, Bath-Hextall F (2014) The effectiveness of virtual reality interventions in improving balance in adults with impaired balance compared with standard or no treatment: a systematic review and meta-analysis. Clin Rehabil 28:419–431
pubmed: 24188913 doi: 10.1177/0269215513509389
Forsberg A, Nilsagård Y, Boström K (2015) Perceptions of using videogames in rehabilitation: a dual perspective of people with multiple sclerosis and physiotherapists. Disabil Rehabil 37:338–344
pubmed: 24833535 doi: 10.3109/09638288.2014.918196
van Diest M, Stegenga J, Wörtche HJ et al (2016) Exergames for unsupervised balance training at home: a pilot study in healthy older adults. Gait Posture 44:161–167
pubmed: 27004651 doi: 10.1016/j.gaitpost.2015.11.019
Peng W, Lin J-H, Crouse J (2011) Is playing exergames really exercising? A meta-analysis of energy expenditure in active video games. Cyberpsychology Behav Soc Netw 14:681–688
doi: 10.1089/cyber.2010.0578
Kleim JA, Jones TA (2008) Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 51:S225–239
pubmed: 18230848 doi: 10.1044/1092-4388(2008/018)
Kolb B, Muhammad A (2014) Harnessing the power of neuroplasticity for intervention. Front Hum Neurosci 8:377
pubmed: 25018713 pmcid: 4072970 doi: 10.3389/fnhum.2014.00377
Raven F, Van der Zee EA, Meerlo P, Havekes R (2018) The role of sleep in regulating structural plasticity and synaptic strength: implications for memory and cognitive function. Sleep Med Rev 39:3–11
pubmed: 28641933 doi: 10.1016/j.smrv.2017.05.002
Karim H, Schmidt B, Dart D et al (2012) Functional near-infrared spectroscopy (fNIRS) of brain function during active balancing using a video game system. Gait Posture 35:367–372
pubmed: 22078300 doi: 10.1016/j.gaitpost.2011.10.007
Prosperini L, Fanelli F, Petsas N et al (2014) Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board. Radiology 273:529–538
pubmed: 25158046 doi: 10.1148/radiol.14140168
O’Reilly JX, Beckmann CF, Tomassini V et al (2010) Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb Cortex 20:953–965
pubmed: 19684249 doi: 10.1093/cercor/bhp157

Auteurs

Luca Prosperini (L)

Department of Neurosciences, S. Camillo-Forlanini Hospital, c.ne Gianicolense 87, 00152, Rome, Italy. luca.prosperini@gmail.com.

Valentina Tomassini (V)

Institute for Advanced Biomedical Technologies (ITAB), Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara "G. D'Annunzio", Via Luigi Polacchi, 66100, Chieti, Italy.
Multiple Sclerosis Centre, Neurology Unit, "SS. Annunziata" University Hospital, Via dei Vestini 31, 66100, Chieti, Italy.

Letizia Castelli (L)

Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 3, 09123, Cagliari, Italy.

Andrea Tacchino (A)

Scientific Research Area, Italian Multiple Sclerosis Foundation, Via Operai 40, 16149, Genoa, Italy.

Giampaolo Brichetto (G)

Scientific Research Area, Italian Multiple Sclerosis Foundation, Via Operai 40, 16149, Genoa, Italy.
Rehabilitation Centre, Italian Multiple Sclerosis Society, Via Operai 40, 16149, Genoa, Italy.

Davide Cattaneo (D)

LaRiCE Lab, IRCCS Don Carlo Gnocchi Foundation, Via Capecelatro 66, 20148, Milan, Italy.

Claudio Marcello Solaro (CM)

Rehabilitation Unit 'Mons. L. Novarese' Hospital, Loc. Trompone, 13040, Moncrivello, VC, Italy.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH