Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring.

azulene cyclization density functional calculations electronic structures photochromism substituent effects

Journal

Chemistry (Weinheim an der Bergstrasse, Germany)
ISSN: 1521-3765
Titre abrégé: Chemistry
Pays: Germany
ID NLM: 9513783

Informations de publication

Date de publication:
04 Sep 2020
Historique:
received: 07 04 2020
revised: 18 05 2020
pubmed: 21 5 2020
medline: 21 5 2020
entrez: 21 5 2020
Statut: ppublish

Résumé

The cyclization reaction of diarylethenes having an azulene ring occurs only via higher excited states. Novel diarylethenes having an azulene ring with a strong donor or acceptor were synthesized and examined in these reactions. A derivative having an electron-donating 1,3-benzodithiol-2-ylidenemethyl group at the 1-position of the azulene ring showed photochromism, whereas neither a derivative having a π-conjugated electron-donating group at the 3-position of the azulene ring nor derivatives having a π-conjugated electron-withdrawing group at the 1- or 3-position of the azulene ring showed any photochromism. The photoreactivities of these compounds were explained by calculating forces and bond orders on the excited states using density functional theory (DFT) and time-dependent (TD)-DFT.

Identifiants

pubmed: 32432373
doi: 10.1002/chem.202001671
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

11441-11450

Subventions

Organisme : Japan Society for the Promotion of Science
ID : JP26107012
Organisme : Japan Science and Technology Agency
ID : JPMJCR17N2

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

 
M. Irie, Chem. Rev. 2000, 100, 1683-1684;
M. Irie, K. Uchida, Bull. Chem. Soc. Jpn. 1998, 71, 985-996;
M. Irie, T. Fukaminato, K. Matsuda, S. Kobatake, Chem. Rev. 2014, 114, 12174-12277.
 
M. Morimoto, M. Irie, J. Am. Chem. Soc. 2010, 132, 14172-14178;
F. Terao, M. Morimoto, M. Irie, Angew. Chem. Int. Ed. 2012, 51, 901-904;
Angew. Chem. 2012, 124, 925-928;
R. Nishimura, A. Fujimoto, N. Yasuda, M. Morimoto, T. Nagasaka, H. Sotome, S. Ito, H. Miyasaka, S. Yokojima, S. Nakamura, B. L. Feringa, K. Uchida, Angew. Chem. Int. Ed. 2019, 58, 13308-13312;
Angew. Chem. 2019, 131, 13442-13446.
 
C. Jia, A. Migliore, N. Xin, S. Huang, J. Wang, Q. Yang, S. Wang, H. Chen, D. Wang, B. Feng, Z. Liu, G. Zhang, D.-H. Qu, H. Tian, M. A. Ratner, H. Q. Xu, A. Nitzan, X. Guo, Science 2016, 352, 1443-1445;
T. Leydecker, M. Herder, E. Pavlica, G. Bratina, S. Hecht, E. Orgiu, P. Samorì, Nat. Nanotechnol. 2016, 11, 769-775;
Z. Liu, H. I. Wang, A. Narita, Q. Chen, Z. Mics, D. Turchinovich, M. Kläui, M. Bonn, K. Müllen, J. Am. Chem. Soc. 2017, 139, 9443-9446.
 
R. Nishimura, K. Hyodo, H. Mayama, S. Yokojima, S. Nakamura, K. Uchida, Commun. Chem. 2019, 2, 90;
E. Hatano, M. Morimoto, T. Imai, K. Hyodo, A. Fujimoto, R. Nishimura, A. Sekine, N. Yasuda, S. Yokojima, S. Nakamura, K. Uchida, Angew. Chem. Int. Ed. 2017, 56, 12576-12580;
Angew. Chem. 2017, 129, 12750-12754;
R. Nishimura, K. Hyodo, H. Sawaguchi, Y. Yamamoto, Y. Nonomura, H. Mayama, S. Yokojima, S. Nakamura, K. Uchida, J. Am. Chem. Soc. 2016, 138, 10299-10303.
 
J. Okuda, Y. Tanaka, R. Kodama, K. Sumaru, K. Morishita, T. Kanamori, S. Yamazoe, K. Hyodo, S. Yamazaki, T. Miyatake, S. Yokojima, S. Nakamura, K. Uchida, Chem. Commun. 2015, 51, 10957-10960;
R. Kodama, K. Sumaru, K. Morishita, T. Kanamori, K. Hyodo, T. Kamitanaka, M. Morimoto, S. Yokojima, S. Nakamura, K. Uchida, Chem. Commun. 2015, 51, 1736-1738;
S. Li, R. Liu, X. Jiang, Y. Qiu, X. Song, G. Huang, N. Fu, L. Lin, J. Song, X. Chen, H. Yang, ACS Nano 2019, 13, 2103-2113;
Y. Qin, L.-J. Chen, F. Dong, S.-T. Jiang, G.-Q. Yin, X. Li, Y. Tian, H.-B. Yang, J. Am. Chem. Soc. 2019, 141, 8943-8950.
 
M. Kasha, Disc. Faraday Soc. 1950, 9, 14-19;
H.-W. Tseng, J.-Y. Shen, T.-Y. Kuo, T.-S. Tu, Y.-A. Chen, A. P. Demchenko, P.-T. Chou, Chem. Sci. 2016, 7, 655-665;
A. P. Demchenko, V. I. Tomin, P.-T. Chou, Chem. Rev. 2017, 117, 13353-13381.
 
R. T. F. Jukes, V. Adamo, F. Hartl, P. Belser, L. De Cola, Inorg. Chem. 2004, 43, 2779-2792;
V. W. W. Yam, C.-C. Ko, N. Zhu, J. Am. Chem. Soc. 2004, 126, 12734-12735;
M. T. Indelli, S. Carli, M. Ghirotti, C. Chiorboli, M. Ravaglia, M. Garavelli, F. Scandola, J. Am. Chem. Soc. 2008, 130, 7286-7299;
S. Fredrich, R. Göstl, M. Herder, L. Grubert, S. Hecht, Angew. Chem. Int. Ed. 2016, 55, 1208-1212;
Angew. Chem. 2016, 128, 1226-1230;
Z. Zhang, W. Wang, P. Jin, J. Xue, L. Sun, J. Huang, J. Zhang, H. Tian, Nat. Commun. 2019, 10, 4232.
 
M. Beer, H. C. Longuet-Higgins, J. Chem. Phys. 1955, 23, 1390-1391;
N. J. Turro, V. Ramamurthy, J. C. Scaiano, Principles of Molecular Photochemistry An Introduction, University Science Books, California, 2009.
 
M. J. Bearpark, F. Bernardi, S. Clifford, M. Olivucci, M. A. Robb, B. R. Smith, T. Vreven, J. Am. Chem. Soc. 1996, 118, 169-175;
P. Foggi, F. V. R. Neuwahl, L. Moroni, P. R. Salvi, J. Phys. Chem. A 2003, 107, 1689-1696;
A. Murakami, T. Kobayashi, A. Goldberg, S. Nakamura, J. Chem. Phys. 2004, 120, 1245-1252.
 
K. Kurotobi, K. S. Kim, S. B. Noh, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 2006, 45, 3944-3947;
Angew. Chem. 2006, 118, 4048-4051;
C. Lambert, G. Nöll, M. Zabel, F. Hampel, E. Schmälzlin, C. Bräuchle, K. Meerholz, Chem. Eur. J. 2003, 9, 4232-4239;
H. Xin, X. Gao, ChemPlusChem 2017, 82, 945-956;
J.-X. Dong, H.-L. Zhang, Chin. Chem. Lett. 2016, 27, 1097-1104;
Y. Zhou, Y. Zhuang, X. Li, H. Ågren, L. Yu, J. Ding, L. Zhu, Chem. Eur. J. 2017, 23, 7642-7647;
A. G. Lvov, A. Bredihhin, J. Peet, A. V. Yadykov, A. O. Dmitrienko, V. Z. Shirinian, Dyes Pigm. 2020, 172, 107843.
J. Kitai, T. Kobayashi, W. Uchida, M. Hatakeyama, S. Yokojima, S. Nakamura, K. Uchida, J. Org. Chem. 2012, 77, 3270-3276.
S. Fukumoto, T. Nakashima, T. Kawai, Angew. Chem. Int. Ed. 2011, 50, 1565-1568;
Angew. Chem. 2011, 123, 1603-1606.
S. L. Gilat, S. H. Kawai, J. M. Lehn, Chem. Eur. J. 1995, 1, 275-284.
 
X. Guo, D. Zhang, D. Zhu, J. Phys. Chem. B 2004, 108, 212-217;
M. Åxman Petersen, L. Zhu, S. H. Jensen, A. S. Andersson, A. Kadziola, K. Kilså, M. Brøndsted Nielsen, Adv. Funct. Mater. 2007, 17, 797-804.
 
J. Daub, T. Knöchel, A. Mannschreck, Angew. Chem. Int. Ed. Engl. 1984, 23, 960-961;
Angew. Chem. 1984, 96, 980-981;
T. Mrozek, H. Görner, J. Daub, Chem. Eur. J. 2001, 7, 1028-1040;
A. U. Petersen, J. K. S. Hansen, E. S. Andreasen, S. P. Christensen, A. Tolstrup, A. B. Skov, A. Vlasceanu, M. Cacciarini, M. B. Nielsen, Chem. Eur. J. 2020, https://doi.org/10.1002/chem.202000530.
 
T. Nagai, I. Takahashi, T. Nishikubo, Chem. Lett. 2003, 32, 754-755;
M. Quant, A. Lennartson, A. Dreos, M. Kuisma, P. Erhart, K. Börjesson, K. Moth-Poulsen, Chem. Eur. J. 2016, 22, 13265-13274;
M. Jevric, A. U. Petersen, M. Mansø, S. Kumar Singh, Z. Wang, A. Dreos, C. Sumby, M. B. Nielsen, K. Börjesson, P. Erhart, K. Moth-Poulsen, Chem. Eur. J. 2018, 24, 12767-12772.
W. Treibs, H.-J. Neupert, J. Hiebsch, Chem. Ber. 1959, 92, 141-154.
 
K. Ishikawa, K. Akiba, N. Inamoto, Tetrahedron Lett. 1976, 17, 3695-3698;
A. Ohta, K. Yamaguchi, N. Fujisawa, Y. Yamashita, K. Fujimori, Heterocycles 2001, 54, 377-385.
A. E. Asato, R. S. H. Liu, V. P. Rao, Y. M. Cai, Tetrahedron Lett. 1996, 37, 419-422.
 
A. D. Becke, J. Chem. Phys. 1993, 98, 5648;
A. D. Becke, Phys. Rev. A 1988, 38, 3098;
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
 
W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261;
P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213-222;
M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, J. Chem. Phys. 1982, 77, 3654-3665.
Gaussian 16, Revision A03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
 
S. Yokojima, K. Matsuda, M. Irie, A. Murakami, T. Kobayashi, S. Nakamura, J. Phys. Chem. A 2006, 110, 8137-8143;
S. Yokojima, T. Kobayashi, K. Shinoda, K. Matsuda, K. Higashiguchi, S. Nakamura, J. Phys. Chem. B 2011, 115, 5685-5692.
T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett. 2004, 393, 51-57.
Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.
 
G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110;
R. Improta, V. Barone, G. Scalmani, M. J. Frisch, J. Chem. Phys. 2006, 125, 054103.
 
K. Uchida, T. Ishikawa, M. Takeshita, M. Irie, Tetrahedron 1998, 54, 6627-6638;
S. Takami, L. Kuroki, M. Irie, J. Am. Chem. Soc. 2007, 129, 7319-7326.
 
M. Irie, K. Sakemura, M. Okinaka, K. Uchida, J. Org. Chem. 1995, 60, 8305-8309;
Y. Yokoyama, Y. Kurita, Nippon Kagaku Kaishi 1992, 998;
Y. Yokoyama, Y. Kurita, J. Synth. Org. Chem. Jpn. 1991, 49, 364.
S. Nakamura, M. Irie, J. Org. Chem. 1988, 53, 6136-6138.
 
Y. Asano, A. Murakami, T. Kobayashi, A. Goldberg, D. Guillaumont, S. Yabushita, M. Irie, S. Nakamura, J. Am. Chem. Soc. 2004, 126, 12112-12120;
J. Ern, A. T. Bens, H.-D. Martin, S. Mukamel, S. Tretiak, K. Tsyganenko, K. Kuldova, H. P. Trommsdorff, C. Kryschi, J. Phys. Chem. A 2001, 105, 1741-1749;
A. Goldberg, A. Murakami, K. Kanda, T. Kobayashi, S. akamura, K. Uchida, H. Sekiya, T. Fukaminato, T. Kawai, S. Kobatake, M. Irie, J. Phys. Chem. A 2003, 107, 4982-4988.
NBO Version 3.1, E. D. Glendening, A. E. Reed, J. E. Carpenter, F. Weinhold.

Auteurs

Yohei Hattori (Y)

Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan.

Tatsuya Maejima (T)

Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan.

Yumi Sawae (Y)

Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan.

Jun-Ichiro Kitai (JI)

Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan.

Masakazu Morimoto (M)

Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.

Ryojun Toyoda (R)

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Hiroshi Nishihara (H)

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.

Satoshi Yokojima (S)

School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.

Shinichiro Nakamura (S)

Nakamura Laboratory, RIKEN Cluster for Science, Technology and Innovation Hub, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.

Kingo Uchida (K)

Department of Materials Chemistry, Faculty of Science and Technology, Ryukoku University, Seta, Otsu, Shiga, 520-2194, Japan.

Classifications MeSH