Integrative genome-wide analysis reveals the role of WIP proteins in inhibition of growth and development.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
15 05 2020
15 05 2020
Historique:
received:
27
01
2020
accepted:
23
04
2020
entrez:
17
5
2020
pubmed:
18
5
2020
medline:
16
6
2021
Statut:
epublish
Résumé
In cucurbits, CmWIP1 is a master gene controlling sex determination. To bring new insight in the function of CmWIP1, we investigated two Arabidopsis WIP transcription factors, AtWIP1/TT1 and AtWIP2/NTT. Using an inducible system we showed that WIPs are powerful inhibitor of growth and inducer of cell death. Using ChIP-seq and RNA-seq we revealed that most of the up-regulated genes bound by WIPs display a W-box motif, associated with stress signaling. In contrast, the down-regulated genes contain a GAGA motif, a known target of polycomb repressive complex. To validate the role of WIP proteins in inhibition of growth, we expressed AtWIP1/TT1 in carpel primordia and obtained male flowers, mimicking CmWIP1 function in melon. Using other promoters, we further demonstrated that WIPs can trigger growth arrest of both vegetative and reproductive organs. Our data supports an evolutionary conserved role of WIPs in recruiting gene networks controlling growth and adaptation to stress.
Identifiants
pubmed: 32415243
doi: 10.1038/s42003-020-0969-2
pii: 10.1038/s42003-020-0969-2
pmc: PMC7229033
doi:
Substances chimiques
Arabidopsis Proteins
0
At3g57670 protein, Arabidopsis
0
At5g56210 protein, Arabidopsis
0
Intracellular Signaling Peptides and Proteins
0
Transcription Factors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
239Subventions
Organisme : European Research Council
ID : 341076
Pays : International
Références
Irish, E. E. & Nelson, T. Sex determination in monoecious and dioecious plants. Plant Cell 1, 737–744 (1989).
doi: 10.2307/3868981
Renner, S. & Schaefer, H. Phylogeny and evolution of the Cucurbitaceae. In Plant Genetics and Genomics: Crops and Models (eds Grumet, R., Katzir, N. & Garcia-Mas, J.) vol 20 (Springer, Cham, 2016).
Kocyan, A., Zhang, L.-B., Schaefer, H. & Renner, S. S. A multi-locus chloroplast phylogeny for the Cucurbitaceae and its implications for character evolution and classification. Mol. Phylogenet. Evol. 44, 553–577 (2007).
doi: 10.1016/j.ympev.2006.12.022
Boualem, A. et al. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321, 836–838 (2008).
doi: 10.1126/science.1159023
Boualem, A. et al. A cucurbit androecy gene reveals how unisexual flowers develop and dioecy emerges. Science 350, 688–691 (2015).
doi: 10.1126/science.aac8370
Martin, A. et al. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461, 1135–1138 (2009).
doi: 10.1038/nature08498
Englbrecht, C. C., Schoof, H. & Böhm, S. Conservation, diversification and expansion of C
doi: 10.1186/1471-2164-5-39
Sagasser, M., Lu, G. H., Hahlbrock, K. & Weisshaar, B. A. thaliana TRANSPARENT TESTA 1 is involved in seed coat development and defines the WIP subfamily of plant zinc finger proteins. Genes Dev. 16, 138–149 (2002).
doi: 10.1101/gad.212702
Jones, V. A. S. & Dolan, L. MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha. Development 144, 1472–1476 (2017).
doi: 10.1242/dev.144287
Appelhagen, I. et al. Weird fingers: functional analysis of WIP domain proteins. FEBS Lett. 584, 3116–3122 (2010).
doi: 10.1016/j.febslet.2010.06.007
Crawford, B. C. W., Ditta, G. & Yanofsky, M. F. The NTT gene is required for transmitting-tract development in carpels of Arabidopsis thaliana. Curr. Biol. 17, 1101–1108 (2007).
doi: 10.1016/j.cub.2007.05.079
Crawford, B. et al. Genetic control of distal stem cell fate within root and embryonic meristems. Science 347, 655–659 (2015).
doi: 10.1126/science.aaa0196
Chung, K. S., Lee, J. H., Lee, J. S. & Ahn, J. H. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Mol. Cells 35, 519–525 (2013).
doi: 10.1007/s10059-013-0030-0
Ruggieri, V. et al. An improved assembly and annotation of the melon (Cucumis melo L.) reference genome. Sci. Rep. 8, 8088 (2018).
doi: 10.1038/s41598-018-26416-2
Craft, J. et al. New pOp/LhG4 vectors for stringent glucocorticoid-dependent transgene expression in Arabidopsis. Plant J. 41, 899–918 (2005).
doi: 10.1111/j.1365-313X.2005.02342.x
Demidchik, V. et al. Stress-induced electrolyte leakage: the role of K
doi: 10.1093/jxb/eru004
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).
doi: 10.1016/j.molcel.2010.05.004
O’Malley, R. C. et al. Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 165, 1280–1292 (2016).
doi: 10.1016/j.cell.2016.04.038
Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
doi: 10.1089/omi.2011.0118
Phukan, U. J., Jeena, G. S. & Shukla, R. K. WRKY transcription factors: molecular regulation and stress responses in plants. Front. Plant Sci. 7, 760 (2016).
doi: 10.3389/fpls.2016.00760
Banerjee, A. & Roychoudhury, A. WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci. World J. 2015, 807560 (2015).
doi: 10.1155/2015/807560
Sangwan, I. & O’Brian, M. R. Identification of a soybean protein that interacts with GAGA element dinucleotide repeat DNA. Plant Physiol. 129, 1788–1794 (2002).
doi: 10.1104/pp.002618
Santi, L. et al. The GA octodinucleotide repeat binding factor BBR participates in the transcriptional regulation of the homeobox gene Bkn3. Plant J. 34, 813–826 (2003).
doi: 10.1046/j.1365-313X.2003.01767.x
Meister, R. J. et al. Definition and interactions of a positive regulatory element of the Arabidopsis INNER NO OUTER promoter. Plant J. 37, 426–438 (2004).
doi: 10.1046/j.1365-313X.2003.01971.x
Hecker, A. et al. The Arabidopsis GAGA-binding factor BASIC PENTACYSTEINE6 recruits the POLYCOMB-REPRESSIVE COMPLEX1 component LIKE HETEROCHROMATIN PROTEIN1 to GAGA DNA motifs. Plant Physiol. 168, 1013–1024 (2015).
doi: 10.1104/pp.15.00409
Bowman, J. L. & Smyth, D. R. CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126, 2387–2396 (1999).
pubmed: 10225998
Jack, T., Brockman, L. L. & Meyerowitz, E. M. The homeotic gene apetala3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68, 683–697 (1992).
doi: 10.1016/0092-8674(92)90144-2
Larkin, J., Oppenheimer, D., Pollock, S. & Marks, M. Arabidopsis GLABROUS1 gene requires downstream sequences for function. Plant Cell 5, 1739–1748 (1993).
doi: 10.2307/3869690
Fukaki, H., Tameda, S., Masuda, H. & Tasaka, M. Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J. 29, 153–168 (2002).
doi: 10.1046/j.0960-7412.2001.01201.x
Lian, J. et al. Silencing of BnTT1 family genes affects seed flavonoid biosynthesis and alters seed fatty acid composition in Brassica napus. Plant Sci. 254, 32–47 (2017).
doi: 10.1016/j.plantsci.2016.10.012
Ren, G. et al. GhWIP2, a WIP zinc finger protein, suppresses cell expansion in Gerbera hybrida by mediating crosstalk between gibberellin, abscisic acid, and auxin. New Phytol. 219, 728–742 (2018).
doi: 10.1111/nph.15175
Himmelbach, A. et al. A set of modular binary vectors for transformation of cereals. Plant Physiol. 145, 1192–1200 (2007).
doi: 10.1104/pp.107.111575
Karimi, M., Bleys, A., Vanderhaeghen, R. & Hilson, P. Building blocks for plant gene assembly. Plant Physiol. 145, 1183–1191 (2007).
doi: 10.1104/pp.107.110411
Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).
doi: 10.1093/molbev/mst197
Song, Y. et al. Age-triggered and dark-induced leaf senescence require the bHLH transcription factors PIF3, 4 and 5. Mol. Plant 7, 1776–1787 (2014).
doi: 10.1093/mp/ssu109
Jégu, T. et al. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility. Genome Biol. 18, 1–16 (2017).
doi: 10.1186/s13059-017-1246-7
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).
doi: 10.1093/bioinformatics/btp324
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).
doi: 10.1186/gb-2008-9-9-r137
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016).
doi: 10.1093/nar/gkw257
R Core Team. R: A Language and Environment for Statistical Computing (2014).
Wickham, H ggplot2: Elegant Graphics for Data Analysis. (Springer-Verlag: New York, 2016).
doi: 10.1007/978-3-319-24277-4
Larsson, J. eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses. R Package Version 6.0.0 (2019).
Wuyts, N. et al. High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll. Plant Methods 6, 1–14 (2010).
doi: 10.1186/1746-4811-6-17