Monitoring of cardiovascular physiology augmented by a patient-specific biomechanical model during general anesthesia. A proof of concept study.
Algorithms
Anesthesia, General
/ methods
Arterial Pressure
/ physiology
Biomechanical Phenomena
Blood Pressure
Cardiac Output
/ physiology
Female
Hemodynamic Monitoring
/ methods
Humans
Hypotension
/ drug therapy
Male
Middle Aged
Models, Cardiovascular
Norepinephrine
/ administration & dosage
Proof of Concept Study
Prospective Studies
Stroke Volume
/ physiology
Vasoconstrictor Agents
/ administration & dosage
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2020
2020
Historique:
received:
04
03
2020
accepted:
22
04
2020
entrez:
15
5
2020
pubmed:
15
5
2020
medline:
5
8
2020
Statut:
epublish
Résumé
During general anesthesia (GA), direct analysis of arterial pressure or aortic flow waveforms may be inconclusive in complex situations. Patient-specific biomechanical models, based on data obtained during GA and capable to perform fast simulations of cardiac cycles, have the potential to augment hemodynamic monitoring. Such models allow to simulate Pressure-Volume (PV) loops and estimate functional indicators of cardiovascular (CV) system, e.g. ventricular-arterial coupling (Vva), cardiac efficiency (CE) or myocardial contractility, evolving throughout GA. In this prospective observational study, we created patient-specific biomechanical models of heart and vasculature of a reduced geometric complexity for n = 45 patients undergoing GA, while using transthoracic echocardiography and aortic pressure and flow signals acquired in the beginning of GA (baseline condition). If intraoperative hypotension (IOH) appeared, diluted norepinephrine (NOR) was administered and the model readjusted according to the measured aortic pressure and flow signals. Such patients were a posteriori assigned into a so-called hypotensive group. The accuracy of simulated mean aortic pressure (MAP) and stroke volume (SV) at baseline were in accordance with the guidelines for the validation of new devices or reference measurement methods in all patients. After NOR administration in the hypotensive group, the percentage of concordance with 10% exclusion zone between measurement and simulation was >95% for both MAP and SV. The modeling results showed a decreased Vva (0.64±0.37 vs 0.88±0.43; p = 0.039) and an increased CE (0.8±0.1 vs 0.73±0.11; p = 0.042) in hypotensive vs normotensive patients. Furthermore, Vva increased by 92±101%, CE decreased by 13±11% (p < 0.001 for both) and contractility increased by 14±11% (p = 0.002) in the hypotensive group post-NOR administration. In this work we demonstrated the application of fast-running patient-specific biophysical models to estimate PV loops and functional indicators of CV system using clinical data available during GA. The work paves the way for model-augmented hemodynamic monitoring at operating theatres or intensive care units to enhance the information on patient-specific physiology.
Identifiants
pubmed: 32407353
doi: 10.1371/journal.pone.0232830
pii: PONE-D-20-06385
pmc: PMC7224549
doi:
Substances chimiques
Vasoconstrictor Agents
0
Norepinephrine
X4W3ENH1CV
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0232830Subventions
Organisme : Wellcome Trust
ID : WT 203148/Z/16/Z
Pays : United Kingdom
Déclaration de conflit d'intérêts
I have read the journal’s policy and the authors of this manuscript have the following competing interests: A.L.G., F.V., D.C. and R.C. are co-owners of the patent entitled "Dispositif cardiaque" (number 1758006, 2017). A research license agreement is currently ongoing between the Anesthesiology and intensive care department of Lariboisière hospital, Paris, France and Deltex Medical, Chichester, UK. This does not alter our adherence to PLOS ONE policies on sharing data and materials.
Références
Biomech Model Mechanobiol. 2019 Apr;18(2):503-529
pubmed: 30535650
Med Image Anal. 2009 Oct;13(5):773-84
pubmed: 19664952
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3675-80
pubmed: 26984499
Crit Care. 2006;10(6):R154
pubmed: 17083735
Sci Rep. 2017 Jul 24;7(1):6214
pubmed: 28740184
Biomed Eng Online. 2019 Jan 30;18(1):10
pubmed: 30700298
Prog Biophys Mol Biol. 2011 Jan;104(1-3):77-88
pubmed: 19917304
Cardiovasc Res. 2011 Feb 1;89(2):336-43
pubmed: 20952413
Anesthesiology. 2015 Sep;123(3):515-23
pubmed: 26181335
Annu Rev Biomed Eng. 2015;17:351-83
pubmed: 26643023
Anesthesiology. 2016 Jan;124(1):35-44
pubmed: 26540148
Am J Physiol Heart Circ Physiol. 2017 Sep 1;313(3):H558-H567
pubmed: 28576835
Med Biol Eng Comput. 2009 Feb;47(2):131-41
pubmed: 18543011
J Clin Monit Comput. 2018 Oct;32(5):833-840
pubmed: 29188414
Basic Res Cardiol. 1989 May-Jun;84(3):227-46
pubmed: 2669727
Acta Anaesthesiol Scand. 2017 Jul;61(6):590-600
pubmed: 28543052
Anesth Analg. 2010 Nov;111(5):1180-92
pubmed: 20736431
ESC Heart Fail. 2019 Jun;6(3):457-463
pubmed: 30861640
Biomech Model Mechanobiol. 2014 Aug;13(4):897-914
pubmed: 24317551
IEEE Trans Biomed Eng. 2019 May;66(5):1269-1276
pubmed: 30273122
Am J Physiol Heart Circ Physiol. 2005 Aug;289(2):H501-12
pubmed: 16014610
Biomech Model Mechanobiol. 2012 May;11(5):609-30
pubmed: 21796413
Philos Trans A Math Phys Eng Sci. 2009 Sep 13;367(1902):3445-75
pubmed: 19657007
Interface Focus. 2016 Apr 6;6(2):20150083
pubmed: 27051509
Circ Res. 1973 Mar;32(3):314-22
pubmed: 4691336
Crit Care. 2013 Mar 19;17(2):213
pubmed: 23510336
J Gen Intern Med. 2011 Feb;26(2):192-6
pubmed: 20857339
Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H416-23
pubmed: 15345490
Crit Care Med. 2013 Feb;41(2):580-637
pubmed: 23353941
Lancet. 2008 Jul 12;372(9633):139-44
pubmed: 18582931
Eur J Echocardiogr. 2009 Mar;10(2):165-93
pubmed: 19270053
Am J Physiol Heart Circ Physiol. 2005 Apr;288(4):H1943-54
pubmed: 15550528
Am J Physiol Heart Circ Physiol. 2006 Jul;291(1):H403-12
pubmed: 16428349
Circ Cardiovasc Imaging. 2019 Dec;12(1):e008493
pubmed: 30630347
J Mol Cell Cardiol. 1994 Aug;26(8):959-78
pubmed: 7799451
J Clin Monit Comput. 2018 Feb;32(1):23-32
pubmed: 28108832
Med Image Anal. 2012 Jan;16(1):201-15
pubmed: 21920797
Hypertension. 1993 Apr;21(4):504-9
pubmed: 8458649
Thorax. 1968 Jan;23(1):63-8
pubmed: 5637500
J Physiol. 1974 Nov;243(1):1-43
pubmed: 4449057
JAMA. 2006 Mar 8;295(10):1152-60
pubmed: 16522836
Ann Biomed Eng. 2017 Mar;45(3):605-618
pubmed: 27605213
PLoS One. 2020 Feb 21;15(2):e0229015
pubmed: 32084180