Role of the GLUT1 Glucose Transporter in Postnatal CNS Angiogenesis and Blood-Brain Barrier Integrity.
AMP-Activated Protein Kinases
/ metabolism
Animals
Blood-Brain Barrier
/ physiology
Brain
/ blood supply
Cell Movement
Cell Proliferation
Endothelial Cells
/ metabolism
Endothelium
Endothelium, Vascular
/ physiology
Energy Metabolism
Glucose
/ metabolism
Glucose Transporter Type 1
/ antagonists & inhibitors
Glycolysis
Humans
Mice
Neovascularization, Physiologic
Retina
/ cytology
Retinal Vessels
blood-brain barrier
endothelium
extracellular matrix
glucose transport
glycolysis
homeostasis
Journal
Circulation research
ISSN: 1524-4571
Titre abrégé: Circ Res
Pays: United States
ID NLM: 0047103
Informations de publication
Date de publication:
31 07 2020
31 07 2020
Historique:
pubmed:
15
5
2020
medline:
22
5
2021
entrez:
15
5
2020
Statut:
ppublish
Résumé
Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/ We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.
Identifiants
pubmed: 32404031
doi: 10.1161/CIRCRESAHA.119.316463
pmc: PMC7386868
doi:
Substances chimiques
Glucose Transporter Type 1
0
SLC2A1 protein, human
0
Slc2a1 protein, mouse
0
AMP-Activated Protein Kinases
EC 2.7.11.31
Glucose
IY9XDZ35W2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
466-482Références
Physiol Rep. 2014 Sep 28;2(9):
pubmed: 25263208
Cell. 2011 Sep 16;146(6):873-87
pubmed: 21925313
Circ Res. 2007 Feb 2;100(2):158-73
pubmed: 17272818
Nature. 2010 Nov 25;468(7323):557-61
pubmed: 20944627
Neuroscience. 2014 Sep 26;277:455-73
pubmed: 25080160
PLoS One. 2011;6(8):e23205
pubmed: 21826239
Front Cell Dev Biol. 2018 Sep 11;6:100
pubmed: 30255018
Nat Protoc. 2019 Feb;14(2):482-517
pubmed: 30664679
ChemMedChem. 2016 Oct 19;11(20):2261-2271
pubmed: 27552707
Nat Rev Mol Cell Biol. 2007 Jun;8(6):464-78
pubmed: 17522591
Methods Mol Biol. 2019;1862:121-136
pubmed: 30315464
Nat Commun. 2017 Jan 20;8:14152
pubmed: 28106060
J Clin Invest. 2017 Sep 1;127(9):3441-3461
pubmed: 28805663
Cell. 2016 May 5;165(4):882-95
pubmed: 27133169
Cell. 2013 Aug 1;154(3):651-63
pubmed: 23911327
Circulation. 2016 Jan 12;133(2):177-86
pubmed: 26538583
Acta Histochem. 1983;73(1):93-6
pubmed: 6416012
J Biol Chem. 2010 May 14;285(20):15430-9
pubmed: 20231288
Mol Pharmacol. 2008 Jan;73(1):170-7
pubmed: 17942749
Neurochem Int. 2013 Dec;63(7):652-9
pubmed: 23962437
Ann Neurol. 1994 May;35(5):546-51
pubmed: 8179300
J Cereb Blood Flow Metab. 2017 Jul;37(7):2368-2382
pubmed: 27596833
Arterioscler Thromb Vasc Biol. 2015 Jan;35(1):137-45
pubmed: 25359860
Nat Med. 2008 Dec;14(12):1377-83
pubmed: 19029985
Traffic. 2019 Jun;20(6):390-403
pubmed: 30950163
Nature. 2017 May 11;545(7653):224-228
pubmed: 28467822
Annu Rev Biochem. 1998;67:821-55
pubmed: 9759505
Trends Cell Biol. 2018 Mar;28(3):224-236
pubmed: 29153487
Annu Rev Physiol. 2017 Feb 10;79:43-66
pubmed: 27992732
Nat Protoc. 2015 Jan;10(1):53-74
pubmed: 25502884
Epilepsia. 2005 May;46(5):760-6
pubmed: 15857444
Blood. 2006 Jun 1;107(11):4354-63
pubmed: 16455954
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):641-6
pubmed: 19129494
Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50
pubmed: 16199517
Nature. 2016 Jan 14;529(7585):216-20
pubmed: 26735015
Nat Neurosci. 2019 Nov;22(11):1892-1902
pubmed: 31611708
Dev Cell. 2013 Jul 29;26(2):204-19
pubmed: 23871589
Elife. 2018 Sep 06;7:
pubmed: 30188322
Nat Neurosci. 2015 Apr;18(4):521-530
pubmed: 25730668
Epilepsy Curr. 2019 May-Jun;19(3):177-181
pubmed: 31037960
Cell Metab. 2014 Jan 7;19(1):37-48
pubmed: 24332967
J Neurochem. 1989 Oct;53(4):1083-8
pubmed: 2769254
N Engl J Med. 1991 Sep 5;325(10):703-9
pubmed: 1714544
Cancer Cell. 2016 Dec 12;30(6):968-985
pubmed: 27866851
Circ Res. 2019 Feb 15;124(4):511-525
pubmed: 30591003
Cell Metab. 2018 Dec 4;28(6):881-894.e13
pubmed: 30146488
Nat Genet. 1998 Feb;18(2):188-91
pubmed: 9462754
Swiss Med Wkly. 2013 Nov 12;143:w13892
pubmed: 24222646
Science. 2011 Dec 23;334(6063):1727-31
pubmed: 22144466
Mol Cell. 2005 Apr 29;18(3):283-93
pubmed: 15866171
Genesis. 2008 Feb;46(2):74-80
pubmed: 18257043