The emerging roles of WBP2 oncogene in human cancers.
Journal
Oncogene
ISSN: 1476-5594
Titre abrégé: Oncogene
Pays: England
ID NLM: 8711562
Informations de publication
Date de publication:
06 2020
06 2020
Historique:
received:
04
03
2020
accepted:
24
04
2020
revised:
21
04
2020
pubmed:
13
5
2020
medline:
24
11
2020
entrez:
13
5
2020
Statut:
ppublish
Résumé
WW domain-binding protein 2 (WBP2) is an emerging oncoprotein. Over the past decade, WBP2 surfaced as a key node connecting key signaling pathways associated with ER/PR, EGFR, PI
Identifiants
pubmed: 32393834
doi: 10.1038/s41388-020-1318-0
pii: 10.1038/s41388-020-1318-0
pmc: PMC7286818
doi:
Substances chimiques
Oncogene Proteins
0
Trans-Activators
0
WBP2 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
4621-4635Références
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
doi: 10.3322/caac.21492
Chen HI, Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci. 1995;92:7819–23.
pubmed: 7644498
doi: 10.1073/pnas.92.17.7819
Chen S, Wang H, Huang Y-F, Li M-L, Cheng J-H, Hu P, et al. WW domain-binding protein 2: an adaptor protein closely linked to the development of breast cancer. Mol Cancer. 2017;16:128.
pubmed: 28724435
pmcid: 5518133
doi: 10.1186/s12943-017-0693-9
Buffa L, Saeed AM, Nawaz Z. Molecular mechanism of WW‐domain binding protein‐2 coactivation function in estrogen receptor signaling. IUBMB Life. 2013;65:76–84.
pubmed: 23233354
doi: 10.1002/iub.1105
Dhananjayan SC, Ramamoorthy S, Khan OY, Ismail A, Sun J, Slingerland J, et al. WW domain binding protein-2, an E6-associated protein interacting protein, acts as a coactivator of estrogen and progesterone receptors. Mol Endocrinol. 2006;20:2343–54.
pubmed: 16772533
doi: 10.1210/me.2005-0533
Buniello A, Ingham NJ, Lewis MA, Huma AC, Martinez‐Vega R, Varela‐Nieto I, et al. Wbp2 is required for normal glutamatergic synapses in the cochlea and is crucial for hearing. EMBO Mol Med. 2016;8:191–207.
pubmed: 26881968
pmcid: 4772953
doi: 10.15252/emmm.201505523
Hamilton LE, Suzuki J, Acteau G, Shi M, Xu W, Meinsohn M-C, et al. WBP2 shares a common location in mouse spermatozoa with WBP2NL/PAWP and like its descendent is a candidate mouse oocyte-activating factor. Biol Reprod. 2018;99:1171–83.
pubmed: 30010725
pmcid: 6299249
Zhang S, Zhou D. Role of the transcriptional coactivators YAP/TAZ in liver cancer. Curr Opin Cell Biol. 2019;61:64–71.
pubmed: 31387016
doi: 10.1016/j.ceb.2019.07.006
Isfort I, Elges S, Cyra M, Brandes D, Berthold R, Renner M, et al. Hippo pathway transcriptional coactivators YAP/TAZ in soft tissue and bone tumors. AACR. 2019.
Chen Y, Choong L-Y, Lin Q, Philp R, Wong C-H, Ang B-K, et al. Differential expression of novel tyrosine kinase substrates during breast cancer development. Mol Cell Proteom. 2007;6:2072–87.
doi: 10.1074/mcp.M700395-MCP200
Lim SK, Orhant-Prioux M, Toy W, Tan KY, Lim YP. Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway. FASEB J. 2011;25:3004–18.
pubmed: 21642474
doi: 10.1096/fj.10-169136
Chan SW, Lim CJ, Huang C, Chong YF, Gunaratne H, Hogue K, et al. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene. 2011;30:600.
pubmed: 20972459
doi: 10.1038/onc.2010.438
Lim SK, Lu SY, Kang S-A, Tan HJ, Li Z, Wee ZNA, et al. Wnt signaling promotes breast cancer by blocking ITCH-mediated degradation of YAP/TAZ transcriptional coactivator WBP2. Cancer Res. 2016;76:6278–89.
pubmed: 27578003
doi: 10.1158/0008-5472.CAN-15-3537
Song H, Wu T, Xie D, Li D, Hua K, Hu J, et al. WBP2 downregulation inhibits proliferation by blocking YAP transcription and the EGFR/PI3K/Akt signaling pathway in triple negative breast cancer. Cell Physiol Biochem. 2018;48:1968–82.
pubmed: 30092563
doi: 10.1159/000492520
Kang S-A, Guan JS, Tan HJ, Chu T, Thike AA, Bernadó C, et al. Elevated WBP2 expression in HER2-positive breast cancers correlates with sensitivity to trastuzumab-based neoadjuvant therapy: a retrospective and multicentric study. Clin Cancer Res. 2019;25:2588–600.
pubmed: 30593516
doi: 10.1158/1078-0432.CCR-18-3228
Walko G, Woodhouse S, Pisco AO, Rognoni E, Liakath-Ali K, Lichtenberger BM, et al. A genome-wide screen identifies YAP/WBP2 interplay conferring growth advantage on human epidermal stem cells. Nat Commun. 2017;8:14744.
pubmed: 28332498
pmcid: 5376649
doi: 10.1038/ncomms14744
Chen S, Zhang Y, Wang H, Zeng Y-Y, Li Z, Li M-L, et al. WW domain-binding protein 2 acts as an oncogene by modulating the activity of the glycolytic enzyme ENO1 in glioma. Cell Death Dis. 2018;9:347.
pubmed: 29497031
pmcid: 5832848
doi: 10.1038/s41419-018-0376-5
Gao J, Dai C, Yu X, Yin X-B, Zhou F. microRNA-485-5p inhibits the progression of hepatocellular carcinoma through blocking the WBP2/Wnt signaling pathway. Cell Signal. 2020;66:109466.
pubmed: 31706018
doi: 10.1016/j.cellsig.2019.109466
Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Investig. 2006;116:561–70.
pubmed: 16511588
doi: 10.1172/JCI27987
Patel HK, Bihani T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol Ther. 2018;186:1–24.
pubmed: 29289555
doi: 10.1016/j.pharmthera.2017.12.012
Khosrow-Khavar F, Filion K, Al-Qurashi S, Torabi N, Bouganim N, Suissa S, et al. Cardiotoxicity of aromatase inhibitors and tamoxifen in postmenopausal women with breast cancer: a systematic review and meta-analysis of randomized controlled trials. Ann Oncol. 2017;28:487–96.
pubmed: 27998966
doi: 10.1093/annonc/mdw673
Howlader N, Cronin KA, Kurian AW, Andridge R. Differences in breast cancer survival by molecular subtypes in the United States. Cancer Epidemiology and Prevention. Biomarkers. 2018;27:619–26.
Welboren W-J, Stunnenberg HG, Sweep FC, Span PN. Identifying estrogen receptor target genes. Mol Oncol. 2007;1:138–43.
pubmed: 19383291
pmcid: 5543883
doi: 10.1016/j.molonc.2007.04.001
Richer JK, Jacobsen BM, Manning NG, Abel MG, Wolf DM, Horwitz KB. Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. J Biol Chem. 2002;277:5209–18.
pubmed: 11717311
doi: 10.1074/jbc.M110090200
Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 2003;95:353–61.
pubmed: 12618500
doi: 10.1093/jnci/95.5.353
Shang Y, Hu X, DiRenzo J, Lazar MA, Brown M. Cofactor dynamics and sufficiency in estrogen receptor–regulated transcription. Cell. 2000;103:843–52.
pubmed: 11136970
doi: 10.1016/S0092-8674(00)00188-4
Chen D, Huang S-M, Stallcup MR. Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem. 2000;275:40810–6.
pubmed: 11010967
doi: 10.1074/jbc.M005459200
Clevers H. Wnt/β-catenin signaling in development and disease. Cell. 2006;127:469–80.
doi: 10.1016/j.cell.2006.10.018
pubmed: 17081971
Schneikert J, Behrens J. The canonical Wnt signalling pathway and its APC partner in colon cancer development. Gut. 2007;56:417–25.
pubmed: 16840506
pmcid: 1856802
doi: 10.1136/gut.2006.093310
Dey N, Barwick BG, Moreno CS, Ordanic-Kodani M, Chen Z, Oprea-Ilies G, et al. Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer. 2013;13:537.
pubmed: 24209998
pmcid: 4226307
doi: 10.1186/1471-2407-13-537
Willert K, Jones KA. Wnt signaling: is the party in the nucleus? Genes Dev. 2006;20:1394–404.
pubmed: 16751178
doi: 10.1101/gad.1424006
Ren Y-q, Wang H-j, Zhang Y-q, Liu Y-b. WBP2 modulates G1/S transition in ER + breast cancer cells and is a direct target of miR-206. Cancer Chemother Pharmacol. 2017;79:1003–11.
pubmed: 28391353
doi: 10.1007/s00280-017-3302-0
Li Z, Lim SK, Liang X, Lim YP. The transcriptional coactivator WBP2 primes triple-negative breast cancer cells for responses to Wnt signaling via the JNK/Jun kinase pathway. J Biol Chem. 2018;293:20014–28.
pubmed: 30442712
pmcid: 6311518
doi: 10.1074/jbc.RA118.005796
Mazzoni SM, Fearon ER. AXIN1 and AXIN2 variants in gastrointestinal cancers. Cancer Lett. 2014;355:1–8.
pubmed: 25236910
pmcid: 4298141
doi: 10.1016/j.canlet.2014.09.018
Harvey K, Tapon N. The Salvador-Warts-Hippo pathway-an emerging tumour-suppressor network. Nat Rev Cancer. 2007;7:182.
pubmed: 17318211
doi: 10.1038/nrc2070
Saucedo LJ, Edgar BA. Filling out the Hippo pathway. Nat Rev Mol Cell Biol. 2007;8:613.
pubmed: 17622252
doi: 10.1038/nrm2221
Zeng Q, Hong W. The emerging role of the hippo pathway in cell contact inhibition, organ size control, and cancer development in mammals. Cancer Cell. 2008;13:188–92.
pubmed: 18328423
doi: 10.1016/j.ccr.2008.02.011
Meng Z, Moroishi T, Guan K-L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17.
pubmed: 26728553
pmcid: 4701972
doi: 10.1101/gad.274027.115
Zhang X, Milton C, Poon C, Hong W, Harvey K. Wbp2 cooperates with Yorkie to drive tissue growth downstream of the Salvador–Warts–Hippo pathway. Cell Death Differ. 2011;18:1346.
pubmed: 21311569
pmcid: 3172104
doi: 10.1038/cdd.2011.6
Tokunaga E, Kimura Y, Mashino K, Oki E, Kataoka A, Ohno S, et al. Activation of PI3K/Akt signaling and hormone resistance in breast cancer. Breast Cancer. 2006;13:137–44.
pubmed: 16755107
doi: 10.2325/jbcs.13.137
Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.
doi: 10.1126/science.1141478
pubmed: 17463250
Brunet A, Datta SR, Greenberg ME. Transcription-dependent and-independent control of neuronal survival by the PI3K–Akt signaling pathway. Curr Opin Neurobiol. 2001;11:297–305.
pubmed: 11399427
pmcid: 11399427
doi: 10.1016/S0959-4388(00)00211-7
Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, et al. Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci. 2013;110:6829–34.
pubmed: 23569237
doi: 10.1073/pnas.1217002110
Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46:372–83.
pubmed: 24897931
pmcid: 24897931
doi: 10.3109/07853890.2014.912836
Yang J, Nie J, Ma X, Wei Y, Peng Y, Wei X. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18:26.
pubmed: 30782187
pmcid: 6379961
doi: 10.1186/s12943-019-0954-x
Ptashne M. How eukaryotic transcriptional activators work. Nature. 1988;335:683.
pubmed: 3050531
doi: 10.1038/335683a0
Jackson RJ, Standart N. How do microRNAs regulate gene expression? Sci Stke. 2007;2007:re1–re.
pubmed: 17200520
doi: 10.1126/stke.3672007re1
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem. 2016;121:451–83.
pubmed: 27318122
doi: 10.1016/j.ejmech.2016.05.047
Curtis C, Shah SP, Chin S-F, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature. 2012;486:346–52.
pubmed: 22522925
pmcid: 3440846
doi: 10.1038/nature10983
Pereira B, Chin S-F, Rueda OM, Vollan H-KM, Provenzano E, Bardwell HA, et al. The somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nat Commun. 2016;7:1–16.
Ramos A, Miow QH, Liang X, Lin QS, Putti TC, Lim YP. Phosphorylation of E-box binding USF-1 by PI3K/AKT enhances its transcriptional activation of the WBP2 oncogene in breast cancer cells. The. FASEB J. 2018;32:6982–7001.
doi: 10.1096/fj.201801167RR
Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA‐binding proteins and post‐transcriptional gene regulation. FEBS Lett. 2008;582:1977–86.
pubmed: 18342629
pmcid: 2858862
doi: 10.1016/j.febslet.2008.03.004
Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102.
doi: 10.1038/nrg2290
pubmed: 18197166
Mori M, Triboulet R, Mohseni M, Schlegelmilch K, Shrestha K, Camargo FD, et al. Hippo signaling regulates microprocessor and links cell-density-dependent miRNA biogenesis to cancer. Cell. 2014;156:893–906.
pubmed: 24581491
pmcid: 3982296
doi: 10.1016/j.cell.2013.12.043
Spoel SH, Tada Y, Loake GJ. Post‐translational protein modification as a tool for transcription reprogramming. N. Phytologist. 2010;186:333–9.
doi: 10.1111/j.1469-8137.2009.03125.x
Li S, Shang Y. Regulation of SRC family coactivators by post-translational modifications. Cell Signal. 2007;19:1101–12.
pubmed: 17368849
doi: 10.1016/j.cellsig.2007.02.002
Poulard C, Bittencourt D, Wu DY, Hu Y, Gerke DS, Stallcup MR. A post‐translational modification switch controls coactivator function of histone methyltransferases G9a and GLP. EMBO Rep. 2017;18:1442–59.
pubmed: 28615290
pmcid: 5538762
doi: 10.15252/embr.201744060
Fisher SL, Phillips AJ. Targeted protein degradation and the enzymology of degraders. Curr Opin Chem Biol. 2018;44:47–55.
pubmed: 29885948
doi: 10.1016/j.cbpa.2018.05.004
Stamos JL, Weis WI. The β-catenin destruction complex. Cold Spring Harb Perspect Biol. 2013;5:a007898.
pubmed: 23169527
pmcid: 3579403
doi: 10.1101/cshperspect.a007898
Kim Y, Jho E-h. Regulation of the Hippo signaling pathway by ubiquitin modification. BMB Rep. 2018;51:143.
pubmed: 29366444
pmcid: 5882221
doi: 10.5483/BMBRep.2018.51.3.017
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci. 2017;24:21.
pubmed: 28320393
pmcid: 5359827
doi: 10.1186/s12929-017-0328-x
Vandghanooni S, Eskandani M, Barar J, Omidi Y. Bispecific therapeutic aptamers for targeted therapy of cancer: a review on cellular perspective. J Mol Med. 2018;96:885–902.
pubmed: 30056527
doi: 10.1007/s00109-018-1669-y
Iyer V. V. A review of stapled peptides and small molecules to inhibit protein–protein interactions in cancer. Curr Med Chem. 2016;23:3025–43.
pubmed: 27356541
doi: 10.2174/0929867323666160627103134
Jolliffe CN, Harvey KF, Haines BP, Parasivam G, Kumar S. Identification of multiple proteins expressed in murine embryos as binding partners for the WW domains of the ubiquitin-protein ligase Nedd4. Biochem J. 2000;351:557–65.
pubmed: 11042109
pmcid: 1221394
doi: 10.1042/bj3510557
McDonald CB, Buffa L, Bar-Mag T, Salah Z, Bhat V, Mikles DC, et al. Biophysical basis of the binding of WWOX tumor suppressor to WBP1 and WBP2 adaptors. J Mol Biol. 2012;422:58–74.
pubmed: 22634283
pmcid: 3412936
doi: 10.1016/j.jmb.2012.05.015
Kay BK, Williamson MP, Sudol M. The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 2000;14:231–41.
pubmed: 10657980
doi: 10.1096/fasebj.14.2.231
Chen S, Zhang Y, Wang H, Zeng Y-Y, Li Z, Li M-L, et al. WW domain-binding protein 2 acts as an oncogene by modulating the activity of the glycolytic enzyme ENO1 in glioma. Cell Death Dis. 2018;9:1–13.
doi: 10.1038/s41419-017-0012-9
Song X, Chen J, Zhao M, Zhang C, Yu Y, Lonard DM, et al. Development of potent small-molecule inhibitors to drug the undruggable steroid receptor coactivator-3. Proc Natl Acad Sci. 2016;113:4970–5.
pubmed: 27084884
doi: 10.1073/pnas.1604274113
Bidwell III GL, Raucher D. Therapeutic peptides for cancer therapy. Part I–peptide inhibitors of signal transduction cascades. Expert Opin Drug Deliv. 2009;6:1033–47.
doi: 10.1517/17425240903143745
Dai Y, Yue N, Gong J, Liu C, Li Q, Zhou J, et al. Development of cell-permeable peptide-based PROTACs targeting estrogen receptor α. Eur J Med Chem. 2020;187:111967.
pubmed: 31865016
doi: 10.1016/j.ejmech.2019.111967
Mann MJ, Dzau VJ. Therapeutic applications of transcription factor decoy oligonucleotides. J Clin Investig. 2000;106:1071–5.
pubmed: 11067859
doi: 10.1172/JCI11459
Rubio-Somoza I, Weigel D, Franco-Zorilla J-M, García JA, Paz-Ares J. ceRNAs: miRNA target mimic mimics. Cell. 2011;147:1431–2.
pubmed: 22196719
doi: 10.1016/j.cell.2011.12.003
Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26:484–98.
pubmed: 27002218
pmcid: 4822129
doi: 10.1038/cr.2016.31
Sakamoto KM, Kim KB, Kumagai A, Mercurio F, Crews CM, Deshaies RJ. Protacs: chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Natl Acad Sci. 2001;98:8554–9.
pubmed: 11438690
doi: 10.1073/pnas.141230798
Vorobyeva NE, Soshnikova NV, Nikolenko JV, Kuzmina JL, Nabirochkina EN, Georgieva SG, et al. Transcription coactivator SAYP combines chromatin remodeler Brahma and transcription initiation factor TFIID into a single supercomplex. Proc Natl Acad Sci. 2009;106:11049–54.
pubmed: 19541607
doi: 10.1073/pnas.0901801106
Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, et al. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem. 2014;62:11–33.
pubmed: 24051359
pmcid: 3873803
doi: 10.1369/0022155413506582
Bradley CA. Perioperative FLOT superior to ECF/X. Nat Rev Clin Oncol. 2019;16:465.
pubmed: 31019282
doi: 10.1038/s41571-019-0215-3
Jiang Z, Li W, Hu X, Zhang Q, Sun T, Cui S, et al. Tucidinostat plus exemestane for postmenopausal patients with advanced, hormone receptor-positive breast cancer (ACE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019;20:806–15.
pubmed: 31036468
doi: 10.1016/S1470-2045(19)30164-0
Volmar C-H, Wahlestedt C. Histone deacetylases (HDACs) and brain function. Neuroepigenetics. 2015;1:20–7.
doi: 10.1016/j.nepig.2014.10.002
Doroshow JH, Kummar S. Translational research in oncology—10 years of progress and future prospects. Nat Rev Clin Oncol. 2014;11:649.
pubmed: 25286976
doi: 10.1038/nrclinonc.2014.158
Vogel C. Efficacy and Safety of Herceptin (trastuzumab, humanized anti-Her2 antibody) as a single agent in first-line treatment of Her2 overexpressing metastatic breast cancer (Her2 + /MBC). Breast Cancer Res Treat. 1998;;50:232.
Druker BJ. STI571 (Gleevec™) as a paradigm for cancer therapy. Trends Mol Med. 2002;8:S14–S8.
pubmed: 11927282
doi: 10.1016/S1471-4914(02)02305-5
Mok TS, Wu Y-L, Thongprasert S, Yang C-H, Chu D-T, Saijo N, et al. Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.
pubmed: 19692680
doi: 10.1056/NEJMoa0810699
Chen S, Wang H, Li Z, You J, Wu Q-W, Zhao C, et al. Interaction of WBP2 with ERα increases doxorubicin resistance of breast cancer cells by modulating MDR1 transcription. Br J Cancer. 2018;119:182.
pubmed: 29937544
pmcid: 6048156
doi: 10.1038/s41416-018-0119-5
Li X, Krishnamurti U, Bhattarai S, Klimov S, Reid MD, O’Regan R, et al. Biomarkers predicting pathologic complete response to neoadjuvant chemotherapy in breast cancer. Am J Clin Pathol. 2016;145:871–8.
pubmed: 27298399
doi: 10.1093/ajcp/aqw045
Rimawi MF, Schiff R, Osborne CK. Targeting HER2 for the treatment of breast cancer. Annu Rev Med. 2015;66:111–28.
pubmed: 25587647
doi: 10.1146/annurev-med-042513-015127
Pisamai S, Roytrakul S, Phaonakrop N, Jaresitthikunchai J, Suriyaphol G. Proteomic analysis of canine oral tumor tissues using MALDI-TOF mass spectrometry and in-gel digestion coupled with mass spectrometry (GeLC MS/MS) approaches. PloS ONE. 2018;13:e0200619.
pubmed: 30001383
pmcid: 6042759
doi: 10.1371/journal.pone.0200619
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.
pubmed: 12952881
pmcid: 403709
doi: 10.1101/gr.772403
Dolcet X, Llobet D, Pallares J, Matias-Guiu X. NF-kB in development and progression of human cancer. Virchows Arch. 2005;446:475–82.
pubmed: 15856292
doi: 10.1007/s00428-005-1264-9
Aoudjit F, Vuori K. Integrin signaling in cancer cell survival and chemoresistance. Chemother Res Pract. 2012;2012:283181.
pubmed: 22567280
pmcid: 3332161
Atkinson MA, Maclaren NK. The pathogenesis of insulin-dependent diabetes mellitus. N Engl J Med. 1994;331:1428–36.
pubmed: 7969282
doi: 10.1056/NEJM199411243312107
Brown SD, Moore MW. The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome. 2012;23:632–40.
pubmed: 22940749
pmcid: 3774932
doi: 10.1007/s00335-012-9427-x
Muñoz-Fuentes V, Cacheiro P, Meehan TF, Aguilar-Pimentel JA, Brown SD, Flenniken AM, et al. The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation. Conserv Genet. 2018;19:995–1005.
pubmed: 30100824
pmcid: 6061128
doi: 10.1007/s10592-018-1072-9
Nitsch R, Di Palma T, Mascia A, Zannini M. WBP-2, a WW domain binding protein, interacts with the thyroid-specific transcription factor Pax8. Biochemical J. 2004;377:553–60.
doi: 10.1042/bj20031233
Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19:A68.
Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.
pubmed: 25613900
doi: 10.1126/science.1260419
pmcid: 25613900